Skip to main content

Advertisement

Log in

Nicotinic acid: A new look at an old drug

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Dyslipidemia is central to the process of atherosclerosis. Modification of the lipid profile by diet, exercise, or pharmacologic therapy has been demonstrated to reduce the risk from atherosclerosis in clinical studies in primary and secondary prevention. Nicotinic acid has been in clinical use for over 50 years. The administration of nicotinic acid has been demonstrated to reduce apolipoprotein B-containing lipoproteins (very low-density lipoprotein, intermediate-density lipoprotein, low-density lipoprotein and lipoprotein (a)). Nicotinic acid also exerts significant effects on high-density lipoprotein. In addition to improving dyslipidemia, nicotinic acid has been demonstrated to induce a number of nonlipid or pleiotropic effects. The recent discovery of the nicotinic acid receptor has improved knowledge relative to the mechanism of action and the adverse effect profile of nicotinic acid. Clinical trials utilizing clinical or angiographic end points demonstrated efficacy for the use of nicotinic acid in monotherapy or in combination with bile acid resins or statins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Meyers CD, Kamanna VS, Kashyap ML: Niacin therapy in atherosclerosis. Curr Opin Lipidol 2004, 15:659–665.

    Article  PubMed  CAS  Google Scholar 

  2. Altschul R, Hoffer A, Stephen JD: Influence of nicotinic acid on serum cholesterol in man. Arch Biochem 1955, 54:558–559.

    Article  PubMed  CAS  Google Scholar 

  3. Karpe F, Frayn KN: The nicotinic acid receptor—a new mechanism for an old drug. Lancet 2004, 363:1892–1894.

    Article  PubMed  CAS  Google Scholar 

  4. Wise A, Foord SM, Fraser NJ, et al.: Molecular identification of high and low affinity receptors for nicotinic acid. J Biol Chem 2003, 278:9869–9874.

    Article  PubMed  CAS  Google Scholar 

  5. Tunaru S, Kero J, Schaub A, et al.: PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat Med 2003, 9:352–355.

    Article  PubMed  CAS  Google Scholar 

  6. Schaub A, Futterer A, Pfeffer K: PUMA-G, an IFN-gamma-inducible gene in macrophages is a novel member of the seven transmembrane spanning receptor superfamily. Eur J Immunol 2001, 31:3714–3725.

    Article  PubMed  CAS  Google Scholar 

  7. Carlson LA: Nicotinic acid: the broad-spectrum lipid drug. A 50th anniversary review. J Intern Med 2005, 258:94–114.

    Article  PubMed  CAS  Google Scholar 

  8. Benyo Z, Gille A, Bennett CL, et al.: Nicotinic acid-induced flushing is mediated by activation of epidermal langerhans cells. Mol Pharmacol 2006, 70:1844–1849.

    Article  PubMed  CAS  Google Scholar 

  9. Morrow JD, Parsons WG 3rd, Roberts LJ 2nd: Release of markedly increased quantities of prostaglandin D2 in vivo in humans following the administration of nicotinic acid. Prostaglandins 1989, 38:263–274.

    Article  PubMed  CAS  Google Scholar 

  10. Cheng K, Wu TJ, Wu KK, et al.: Antagonism of the prostaglandin D2 receptor 1 suppresses nicotinic acid-induced vasodilation in mice and humans. Proc Natl Acad Sci U S A 2006, 103:6682–6687.

    Article  PubMed  CAS  Google Scholar 

  11. Kamanna VS, Kashyap ML: Mechanism of action of niacin. Am J Cardiol 2008, 101(Suppl 8A):20B–26B.

    Article  PubMed  CAS  Google Scholar 

  12. Grundy SM, Mok HY, Zech L, Berman M: Influence of nicotinic acid on metabolism of cholesterol and triglycerides in man. J Lipid Res 1981, 22:24–36.

    PubMed  CAS  Google Scholar 

  13. Ganji SH, Tavintharan S, Zhu D, et al.: Niacin noncompetitively inhibits DGAT2 but not DGAT1 activity in HepG2 cells. J Lipid Res 2004, 45:1835–1845.

    Article  PubMed  CAS  Google Scholar 

  14. Carlson LA, Oro L: The effect of nicotinic acid on the plasma free fatty acid; demonstration of a metabolic type of sympathicolysis. Acta Med Scand 1962, 172:641–645.

    PubMed  CAS  Google Scholar 

  15. Poynten AM, Gan SK, Kriketos AD, et al.: Nicotinic acid-induced insulin resistance is related to increased circulating fatty acids and fat oxidation but not muscle lipid content. Metabolism 2003, 52:699–704.

    Article  PubMed  CAS  Google Scholar 

  16. Florentin M, Liberopoulos EN, Wierzbicki AS, et al.: Multiple actions of high-density lipoprotein. Curr Opin Cardiol 2008, 23:370–378.

    Article  PubMed  Google Scholar 

  17. Shepherd J, Packard CJ, Patsch JR, et al.: Effects of nicotinic acid therapy on plasma high density lipoprotein subfraction distribution and composition and on apolipoprotein A metabolism. J Clin Invest 1979, 63:858–867.

    Article  PubMed  CAS  Google Scholar 

  18. Blum CB, Levy RI, Eisenberg S, et al.: High density lipoprotein metabolism in man. J Clin Invest 1977, 60:795–807.

    Article  PubMed  CAS  Google Scholar 

  19. Jin FY, Kamanna VS, Kashyap ML: Niacin decreases removal of high-density lipoprotein apolipoprotein A-I but not cholesterol ester by Hep G2 cells. Implication for reverse cholesterol transport. Arterioscler Thromb Vasc Biol 1997, 17:2020–2028.

    PubMed  CAS  Google Scholar 

  20. Acton S, Rigotti A, Landschulz KT, et al.: Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 1996, 271:518–520.

    Article  PubMed  CAS  Google Scholar 

  21. Hammad SM, Stefansson S, Twal WO, et al.: Cubilin, the endocytic receptor for intrinsic factor-vitamin B(12) complex, mediates high-density lipoprotein holoparticle endocytosis. Proc Natl Acad Sci U S A 1999, 96:10158–10163.

    Article  PubMed  CAS  Google Scholar 

  22. Martinez LO, Jacquet S, Esteve JP, et al.: Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature 2003, 421:75–79.

    Article  PubMed  CAS  Google Scholar 

  23. Rubic T, Trottmann M, Lorenz RL: Stimulation of CD36 and the key effector of reverse cholesterol transport ATP-binding cassette A1 in monocytoid cells by niacin. Biochem Pharmacol 2004, 67:411–419.

    Article  PubMed  CAS  Google Scholar 

  24. Kamanna VS, Vo A, Kashyap ML: Nicotinic acid: recent developments. Curr Opin Cardiol 2008, 23:393–398.

    Article  PubMed  Google Scholar 

  25. Sanyal S, Karas RH, Kuvin JT: Present-day uses of niacin: effects on lipid and non-lipid parameters. Expert Opin Pharmacother 2007, 8:1711–1717.

    Article  PubMed  CAS  Google Scholar 

  26. Ridker PM: High-sensitivity C-reactive protein as a predictor of all-cause mortality: implications for research and patient care. Clin Chem 2008, 54:234–237.

    Article  PubMed  CAS  Google Scholar 

  27. Devaraj S, Davis B, Simon SI, Jialal I: CRP promotes monocyte-endothelial cell adhesion via Fcgamma receptors in human aortic endothelial cells under static and shear flow conditions. Am J Physiol Heart Circ Physiol 2006, 291:H1170–H1176.

    Article  PubMed  CAS  Google Scholar 

  28. Thoenes M, Oguchi A, Nagamia S, et al.: The effects of extended-release niacin on carotid intimal media thickness, endothelial function and inflammatory markers in patients with the metabolic syndrome. Int J Clin Pract 2007, 61:1942–1948.

    Article  PubMed  CAS  Google Scholar 

  29. Ganji SH, Qin S, Zhang L, et al.: Niacin inhibits vascular oxidative stress, redox-sensitive genes, and monocyte adhesion to human aortic endothelial cells. Atherosclerosis 2008 (in press).

  30. Clofibrate and niacin in coronary heart disease. JAMA 1975, 231:360–381.

  31. Canner PL, Berge KG, Wenger NK, et al.: Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin. J Am Coll Cardiol 1986, 8:1245–1255.

    PubMed  CAS  Google Scholar 

  32. Canner PL, Furberg CD, Terrin ML, McGovern ME: Benefits of niacin by glycemic status in patients with healed myocardial infarction (from the Coronary Drug Project). Am J Cardiol 2005, 95:254–257.

    Article  PubMed  CAS  Google Scholar 

  33. Carlson LA, Rosenhamer G: Reduction of mortality in the Stockholm Ischaemic Heart Disease Secondary Prevention Study by combined treatment with clofibrate and nicotinic acid. Acta Med Scand 1988, 223:405–418.

    PubMed  CAS  Google Scholar 

  34. Brown G, Albers JJ, Fisher LD, et al.: Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med 1990, 323:1289–1298.

    PubMed  CAS  Google Scholar 

  35. Blankenhorn DH, Nessim SA, Johnson RL, et al.: Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts. JAMA 1987, 257:3233–3240.

    Article  PubMed  CAS  Google Scholar 

  36. Whitney EJ, Krasuski RA, Personius BE, et al.: A randomized trial of a strategy for increasing high-density lipoprotein cholesterol levels: effects on progression of coronary heart disease and clinical events. Ann Intern Med 2005, 142:95–104.

    PubMed  Google Scholar 

  37. Brown BG, Zhao XQ, Chait A, et al.: Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N Engl J Med 2001, 345:1583–1592.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Farmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farmer, J.A. Nicotinic acid: A new look at an old drug. Curr Atheroscler Rep 11, 87–92 (2009). https://doi.org/10.1007/s11883-009-0014-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-009-0014-x

Keywords

Navigation