Skip to main content
Log in

Emerging, noninvasive surrogate markers of atherosclerosis

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Noninvasive surrogate markers of atherosclerosis allow the physician to identify subclinical disease before the occurrence of adverse cardiovascular events, thereby limiting the need to perform invasive diagnostic procedures. Imaging modalities, such as carotid artery ultrasound, two-dimensional echocardiography, coronary artery calcium imaging, cardiac magnetic resonance imaging, ankle-brachial indices, brachial artery reactivity testing, and epicardial coronary flow reserve measurements, provide information that may improve the predictive value of a person’s risk of developing clinically significant atherosclerotic disease. Newer imaging modalities have also emerged to bring insight into the pathophysiology and treatment of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Peter Libby, Julie E. Buring, … Eldrin F. Lewis

References and Recommended Reading

  1. Pignoli P, Tremoli E, Poli A, et al.: Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation 1986, 74:1399–1406.

    PubMed  CAS  Google Scholar 

  2. Smith SC Jr, Amsterdam E, Balady GJ, et al.: Prevention Conference V: Beyond secondary prevention: identifying the high-risk patient for primary prevention: tests for silent and inducible ischemia: Writing Group II. Circulation 2000, 101:E12-E16.

    PubMed  Google Scholar 

  3. Salonen JT, Salonen R: Ultrasound B-mode imaging in observational studies of atherosclerotic progression. Circulation 1993, 87(suppl):II56-II65.

    PubMed  CAS  Google Scholar 

  4. Burke GL, Evans GW, Riley WA, et al.: Arterial wall thickness is associated with prevalent cardiovascular disease in middle-aged adults. The Atherosclerosis Risk in Communities (ARIC) Study. Stroke 1995, 26:386–391.

    PubMed  CAS  Google Scholar 

  5. Newman AB, Naydeck B, Sutton-Tyrrell K, et al.: Coronary artery calcification in older adults with minimal clinical or subclinical cardiovascular disease. J Am Geriatr Soc 2000, 48:256–263.

    PubMed  CAS  Google Scholar 

  6. Bots ML, Hoes AW, Koudstaal PJ, et al.: Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam Study. Circulation 1997, 96:1432–1437.

    PubMed  CAS  Google Scholar 

  7. Mannami T, Baba S, Ogata J: Strong and significant relationships between aggregation of major coronary risk factors and the acceleration of carotid atherosclerosis in the general population of a Japanese city: the Suita Study. Arch Intern Med 2000, 160:2297–2303.

    Article  PubMed  CAS  Google Scholar 

  8. Taylor AJ, Kent SM, Flaherty PJ, et al.: ARBITER: Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol: a randomized trial comparing the effects of atorvastatin and pravastatin on carotid intima medial thickness. Circulation 2002, 106:2055–2060.

    Article  PubMed  CAS  Google Scholar 

  9. Smilde TJ, van Wissen S, Wollersheim H, et al.: Effect of aggressive versus conventional lipid lowering on atherosclerosis progression in familial hypercholesterolaemia (ASAP): a prospective, randomised, double-blind trial. Lancet 2001, 357:577–581.

    Article  PubMed  CAS  Google Scholar 

  10. Furberg CD, Adams HP Jr, Applegate WB, et al.: Effect of lovastatin on early carotid atherosclerosis and cardiovascular events. Asymptomatic Carotid Artery Progression Study (ACAPS) Research Group. Circulation 1994, 90:1679–1687.

    PubMed  CAS  Google Scholar 

  11. Hodis HN, Mack WJ, LaBree L, et al.: Reduction in carotid arterial wall thickness using lovastatin and dietary therapy: a randomized controlled clinical trial. Ann Intern Med 1996, 124:548–556.

    PubMed  CAS  Google Scholar 

  12. Mercuri M, Bond MG, Sirtori CR, et al.: Pravastatin reduces carotid intima-media thickness progression in an asymptomatic hypercholesterolemic mediterranean population: the Carotid Atherosclerosis Italian Ultrasound Study. Am J Med 1996, 101:627–634.

    Article  PubMed  CAS  Google Scholar 

  13. Salonen R, Nyyssonen K, Porkkala E, et al.: Kuopio Atherosclerosis Prevention Study (KAPS). A population-based primary preventive trial of the effect of LDL lowering on atherosclerotic progression in carotid and femoral arteries. Circulation 1995, 92:1758–1764.

    PubMed  CAS  Google Scholar 

  14. Byington RP, Furberg CD, Crouse JR 3rd, et al.: Pravastatin, Lipids, and Atherosclerosis in the Carotid Arteries (PLAC-II). Am J Cardiol 1995, 76:54C-59C.

    Article  PubMed  CAS  Google Scholar 

  15. de Groot E, Jukema JW, van Boven AJ, et al.: Effect of pravastatin on progression and regression of coronary atherosclerosis and vessel wall changes in carotid and femoral arteries: a report from the Regression Growth Evaluation Statin Study. Am J Cardiol 1995, 76:40C-46C.

    Article  PubMed  Google Scholar 

  16. Blankenhorn DH, Selzer RH, Crawford DW, et al.: Beneficial effects of colestipol-niacin therapy on the common carotid artery. Two- and four-year reduction of intima-media thickness measured by ultrasound. Circulation 1993, 88:20–28.

    PubMed  CAS  Google Scholar 

  17. Wiklund O, Hulthe J, Wikstrand J, et al.: Effect of controlled release/extended release metoprolol on carotid intima-media thickness in patients with hypercholesterolemia: a 3-year randomized study. Stroke 2002, 33:572–577.

    Article  PubMed  CAS  Google Scholar 

  18. Hedblad B, Wikstrand J, Janzon L, et al.: Low-dose metoprolol CR/XL and fluvastatin slow progression of carotid intima-media thickness: main results from the Beta-Blocker Cholesterol-Lowering Asymptomatic Plaque Study (BCAPS). Circulation 2001, 103:1721–1726.

    PubMed  CAS  Google Scholar 

  19. Borhani NO, Mercuri M, Borhani PA, et al.: Final outcome results of the Multicenter Isradipine Diuretic Atherosclerosis (MIDAS): a randomized controlled trial. JAMA 1996, 276:785–791.

    Article  PubMed  CAS  Google Scholar 

  20. Zanchetti A, Rosei E, Dal Palu C, et al.: The Verapamil in Hypertension and Atherosclerosis Study (VHAS): results of long-term randomized treatment with either verapamil or chlorthalidone on carotid intima-media thickness. J Hypertens 1998, 16:1667–1676.

    Article  PubMed  CAS  Google Scholar 

  21. Simon A, Gariepy J, Moyse D, Levenson J: Differential effects of nifedipine and co-amilozide on the progression of early carotid wall changes. Circulation 2001, 103:2949–2954.

    PubMed  CAS  Google Scholar 

  22. Zanchetti A, Bond MG, Hennig M, et al.: Calcium antagonist lacidipine slows down progression of asymptomatic carotid atherosclerosis: principal results of the European Lacidipine Study on Atherosclerosis (ELSA), a randomized, double-blind, long-term trial. Circulation 2002, 106:2422–2427.

    Article  PubMed  CAS  Google Scholar 

  23. Baldassarre D, Amato M, Bondioli A, et al.: Carotid artery intima-media thickness measured by ultrasonography in normal clinical practice correlates well with atherosclerosis risk factors. Stroke 2000, 31:2426–2430.

    PubMed  CAS  Google Scholar 

  24. O’Leary DH, Polak JF, Kronmal RA, et al.: Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med 1999, 340:14–22.

    Article  PubMed  CAS  Google Scholar 

  25. Kronmal RA, Smith VE, O’Leary DH, et al.: Carotid artery measures are strongly associated with left ventricular mass in older adults (a report from the Cardiovascular Health Study). Am J Cardiol 1996, 77:628–633.

    Article  PubMed  CAS  Google Scholar 

  26. Ferrara LA, Mancini M, Celentano A, et al.: Early changes of the arterial carotid wall in uncomplicated primary hypertensive patients. Study by ultrasound high-resolution B-mode imaging. Arterioscler Thromb 1994, 14:1290–1296.

    PubMed  CAS  Google Scholar 

  27. Riley WA, Barnes RW, Applegate WB, et al.: Reproducibility of noninvasive ultrasonic measurement of carotid atherosclerosis. The Asymptomatic Carotid Artery Plaque Study. Stroke 1992, 23:1062–1068.

    PubMed  CAS  Google Scholar 

  28. Hodis HN, Mack WJ, LaBree L, et al.: The role of carotid arterial intima-media thickness in predicting clinical coronary events. Ann Intern Med 1998, 128:262–269.

    PubMed  CAS  Google Scholar 

  29. Stensland-Bugge E, Bonaa KH, Joakimsen O: Reproducibility of ultrasonographically determined intima-media thickness is dependent on arterial wall thickness. The Tromso Study. Stroke 1997, 28:1972–1980.

    PubMed  CAS  Google Scholar 

  30. Linhart A, Gariepy J, Giral P, et al.: Carotid artery and left ventricular structural relationship in asymptomatic men at risk for cardiovascular disease. Atherosclerosis 1996, 127:103–112.

    Article  PubMed  CAS  Google Scholar 

  31. Bonithon-Kopp C, Touboul PJ, Berr C, et al.: Relation of intima-media thickness to atherosclerotic plaques in carotid arteries. The Vascular Aging (EVA) Study. Arterioscler Thromb Vasc Biol 1996, 16:310–316.

    PubMed  CAS  Google Scholar 

  32. Gariepy J, Simon A, Massonneau M, et al.: Wall thickening of carotid and femoral arteries in male subjects with isolated hypercholesterolemia PCVMETRA Group. Prevention Cardio-Vasculaire en Medecine du Travail. Atherosclerosis 1995, 113:141–151.

    Article  PubMed  CAS  Google Scholar 

  33. Wendelhag I, Wiklund O, Wikstrand J: Arterial wall thickness in familial hypercholesterolemia. Ultrasound measurement of intima-media thickness in the common carotid artery. Arterioscler Thromb 1992, 12:70–77.

    PubMed  CAS  Google Scholar 

  34. Touboul PJ, Prati P, Scarabin PY, et al.: Use of monitoring software to improve the measurement of carotid wall thickness by B-mode imaging. J Hypertens Suppl 1992, 10:S37-S41.

    Article  PubMed  CAS  Google Scholar 

  35. Macioch JE, Patel SN, Bai CJ, et al.: Contrast-enhanced ultrasound imaging measurement of carotid intimal medial thickness. J Am Coll Cardiol 2003, 41(suppl A):318A.

  36. Wong M, Edelstein J, Wollman J, Bond M: Ultrasonic-pathological comparison of the human arterial wall-verification of intima-media thickness. Arterioscler Thromb 1993, 13:482–486.

    PubMed  CAS  Google Scholar 

  37. Droste DW, Kaps M, Navabi DG, Ringlestein EB: Ultrasound contrast enhancing agents in neurosonology: principles, methods, and future possibilities. Acta Neurol Scand 2000, 102:1–10.

    Article  PubMed  CAS  Google Scholar 

  38. Hoffman O, Weih M, Schreiber S, et al.: Measurement of cerebral circulation time by contrast-enhanced Doppler sonography. Cerebrovasc Dis 2000, 10:142–146.

    Article  Google Scholar 

  39. Levy D, Garrison RJ, Savage DD, et al.: Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990, 322:1561–1566.

    Article  PubMed  CAS  Google Scholar 

  40. Sundstrom J, Lind L, Arnlov J, et al.: Echocardiographic and electrocardiographic diagnoses of left ventricular hypertrophy predict mortality independently of each other in a population of elderly men. Circulation 2001, 103:2346–2351.

    PubMed  CAS  Google Scholar 

  41. Raggi P: Coronary calcium on electron beam tomography imaging as a surrogate marker of coronary artery disease. Am J Cardiol 2001, 87:27A-34A.

    Article  PubMed  CAS  Google Scholar 

  42. O’Rourke RA, Brundage BH, Froelicher VF, et al.: American College of Cardiology/American Heart Association Expert Consensus Document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. J Am Coll Cardiol 2000, 36:326–340.

    Article  PubMed  CAS  Google Scholar 

  43. Schmermund A, Denktas AE, Rumberger JA, et al.: Independent and incremental value of coronary artery calcium for predicting the extent of angiographic coronary artery disease: comparison with cardiac risk factors and radionuclide perfusion imaging. J Am Coll Cardiol 1999, 34:777–786.

    Article  PubMed  CAS  Google Scholar 

  44. Hoff JA, Chomka EV, Krainik AJ, et al.: Age and gender distributions of coronary artery calcium detected by electron beam tomography in 35,246 adults. Am J Cardiol 2001, 87:1335–1339.

    Article  PubMed  CAS  Google Scholar 

  45. Wong ND, Kouwabunpat D, Vo AN, et al.: Coronary calcium and atherosclerosis by ultrafast computed tomography in asymptomatic men and women: relation to age and risk factors. Am Heart J 1994, 127:422–430.

    Article  PubMed  CAS  Google Scholar 

  46. Redberg RF, Vogel RA, Criqui MH, et al.: 34th Bethesda Conference: Task force #3—What is the spectrum of current and emerging techniques for the noninvasive measurement of atherosclerosis? J Am Coll Cardiol 2003, 41:1886–1898.

    Article  PubMed  Google Scholar 

  47. Brown BG, Morse J, Zhao XQ, et al.: Electron-beam tomography coronary calcium scores are superior to Framingham risk variables for predicting the measured proximal stenosis burden. Am J Cardiol 2001, 88:23E-26E.

    Article  PubMed  CAS  Google Scholar 

  48. Devries S, Wolfkiel C, Shah V, et al.: Reproducibility of the measurement of coronary calcium with ultrafast computed tomography. Am J Cardiol 1995, 75:973–975.

    Article  PubMed  CAS  Google Scholar 

  49. Mao S, Budoff MJ, Bakhsheshi H, Liu SC: Improved reproducibility of coronary artery calcium scoring by electron beam tomography with a new electrocardiographic trigger method. Invest Radiol 2001, 36:363–367.

    Article  PubMed  CAS  Google Scholar 

  50. O’Malley PG, Feuerstein IM, Taylor AJ: Impact of electron beam tomography, with or without case management, on motivation, behavioral change, and cardiovascular risk profile: a randomized controlled trial. JAMA 2003, 289:2215–2223.

    Article  PubMed  Google Scholar 

  51. Bild DE, Bluemke DA, Burke GL, et al.: Multi-Ethnic Study of Atherosclerosis: objectives and design. Am J Epidemiol 2002, 156:871–881.

    Article  PubMed  Google Scholar 

  52. Corti R, Fayad ZA, Fuster V, et al.: Effects of lipid-lowering by simvastatin on human atherosclerotic lesions: a longitudinal study by high-resolution, noninvasive magnetic resonance imaging. Circulation 2001, 104:249–252.

    PubMed  CAS  Google Scholar 

  53. Chan SK, Jaffer FA, Botnar RM, et al.: Scan reproducibility of magnetic resonance imaging assessment of aortic atherosclerosis burden. J Cardiovasc Magn Reson 2001, 3:331–338.

    Article  PubMed  CAS  Google Scholar 

  54. Kang X, Polissar NL, Han C, et al.: Analysis of the measurement precision of arterial lumen and wall areas using high-resolution MRI. Magn Reson Med 2000, 44:968–972.

    Article  PubMed  CAS  Google Scholar 

  55. Papamichael CM, Lekakis JP, Stamatelopoulos KS, et al.: Ankle-brachial index as a predictor of the extent of coronary atherosclerosis and cardiovascular events in patients with coronary artery disease. Am J Cardiol 2000, 86:615–618.

    Article  PubMed  CAS  Google Scholar 

  56. Yao ST, Hobbs JT, Irvine WT: Ankle systolic pressure measurements in arterial disease affecting the lower extremities. Br J Surg 1969, 56:676–679.

    Article  PubMed  CAS  Google Scholar 

  57. Ouriel K, McDonnell AE, Metz CE, Zarins CK: Critical evaluation of stress testing in the diagnosis of peripheral vascular disease. Surgery 1982, 91:686–693.

    PubMed  CAS  Google Scholar 

  58. Hirsch AT, Criqui MH, Treat-Jacobson D, et al.: Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA 2001, 286:1317–1324.

    Article  PubMed  CAS  Google Scholar 

  59. Criqui MH, Fronek A, Klauber MR, et al.: The sensitivity, specificity, and predictive value of traditional clinical evaluation of peripheral arterial disease: results from noninvasive testing in a defined population. Circulation 1985, 71:516–522.

    PubMed  CAS  Google Scholar 

  60. Fowkes FG, Housley E, Macintyre CC, et al.: Variability of ankle and brachial systolic pressures in the measurement of atherosclerotic peripheral arterial disease. J Epidemiol Community Health 1988, 42:128–133.

    Article  PubMed  CAS  Google Scholar 

  61. Neunteufl T, Heher S, Katzenschlager R, et al.: Late prognostic value of flow-mediated dilation in the brachial artery of patients with chest pain. Am J Cardiol 2000, 86:207–210.

    Article  PubMed  CAS  Google Scholar 

  62. Gould KL, Lipscomb K: Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol 1974, 34:48–55.

    Article  PubMed  CAS  Google Scholar 

  63. Chilian WM, Marcus ML: Phasic coronary blood flow velocity in intramural and epicardial coronary arteries. Circ Res 1982, 50:775–781.

    PubMed  CAS  Google Scholar 

  64. Feinstein SB, Voci P, Pizzuto F: Noninvasive surrogate markers of atherosclerosis. Am J Cardiol 2002, 89:31C-43C; discussion 43C–44C.

    Article  PubMed  Google Scholar 

  65. Hozumi T, Yoshida K, Ogata Y, et al.: Noninvasive assessment of significant left anterior descending coronary artery stenosis by coronary flow velocity reserve with transthoracic color Doppler echocardiography. Circulation 1998, 97:1557–1562.

    PubMed  CAS  Google Scholar 

  66. Hozumi T, Yoshida K, Akasaka T, et al.: Noninvasive assessment of coronary flow velocity and coronary flow velocity reserve in the left anterior descending coronary artery by Doppler echocardiography: comparison with invasive technique. J Am Coll Cardiol 1998, 32:1251–1259.

    Article  PubMed  CAS  Google Scholar 

  67. Caiati C, Montaldo C, Zedda N, et al.: New noninvasive method for coronary flow reserve assessment: contrast-enhanced transthoracic second harmonic echo Doppler. Circulation 1999, 99:771–778.

    PubMed  CAS  Google Scholar 

  68. Caiati C, Zedda N, Montaldo C, et al.: Contrast-enhanced transthoracic second harmonic echo Doppler with adenosine: a noninvasive, rapid and effective method for coronary flow reserve assessment. J Am Coll Cardiol 1999, 34:122–130.

    Article  PubMed  CAS  Google Scholar 

  69. Pizzuto F, Voci P, Sinatra R, et al.: Noninvasive assessment of coronary flow velocity reserve before and after angioplasty in a patient with mammary graft stenosis. Ital Heart J 2000, 1:636–639.

    PubMed  CAS  Google Scholar 

  70. Pizzuto F, Voci P, Mariano E, et al.: Assessment of flow velocity reserve by transthoracic Doppler echocardiography and venous adenosine infusion before and after left anterior descending coronary artery stenting. J Am Coll Cardiol 2001, 38:155–162.

    Article  PubMed  CAS  Google Scholar 

  71. Pizzuto F, Voci P, Mariano E, et al.: Noninvasive coronary flow reserve assessed by transthoracic coronary Doppler ultrasound in patients with left anterior descending coronary artery stents. Am J Cardiol 2003, 91:522–526.

    Article  PubMed  Google Scholar 

  72. Piek JJ, Boersma E, Voskuil M, et al.: The immediate and long-term effect of optimal balloon angioplasty on the absolute coronary blood flow velocity reserve. A subanalysis of the DEBATE study. Doppler Endpoints Balloon Angioplasty Trial Europe. Eur Heart J 2001, 22:1725–1732.

    Article  PubMed  CAS  Google Scholar 

  73. Serruys PW, di Mario C, Piek J, et al.: Prognostic value of intra-coronary flow velocity and diameter stenosis in assessing the short- and long-term outcomes of coronary balloon angioplasty: the DEBATE Study (Doppler Endpoints Balloon Angioplasty Trial Europe). Circulation 1997, 96:3369–3377.

    PubMed  CAS  Google Scholar 

  74. Kumamoto M, Nakashima Y, Sueishi K: Intimal neovascularization in human coronary atherosclerosis: its origin and pathophysiological significance. Hum Pathol 1995, 26:450–456.

    Article  PubMed  CAS  Google Scholar 

  75. Wilson SH, Heurmana J, Leuman L, et al.: Simvastatin preserves the structure of coronary adventitial vasa vasorum in experimental hypercholesterolemia independent of lipid lowering. Circulation 2002, 105:415–418.

    Article  PubMed  CAS  Google Scholar 

  76. Barger AC, Beeukes R, Lainey LL, Silverman KJ: Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med 1984, 310:175–177.

    Article  PubMed  CAS  Google Scholar 

  77. Folkman T: Angiogenesis. In Biology of Endothelial Cells. Edited by Jaffe EA. Boston: Martinus Nijhoff Publishers; 1984:412–428.

    Google Scholar 

  78. Isner JM: Cancer and Atherosclerosis. The broad mandate of angiogenesis [editorial]. Circulation 1999, 99:1653–1655.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, S.N., Rajaram, V., Pandya, S. et al. Emerging, noninvasive surrogate markers of atherosclerosis. Curr Atheroscler Rep 6, 60–68 (2004). https://doi.org/10.1007/s11883-004-0117-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-004-0117-3

Keywords

Navigation