Skip to main content

Advertisement

Log in

Recent advances in liver-directed gene therapy for dyslipidemia

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

As currently available preventive and therapeutic interventions for hypercholesterolemia are ineffective in a substantial proportion of patients, severe dyslipidemias associated with atherosclerotic vascular disease remain an important target for the development of novel gene therapies. The development of a safe and efficient gene transfer vector has been a major challenge in liver-directed gene therapy, but recently significant progress has been made in this area. Proof-of-principle experiments indicate that the transfer of lipid-modifying genes to the liver is an effective method to restore normal plasma lipids and protect against atherosclerosis. This article summarizes recent developments in liver-directed gene delivery and reviews data on the treatment of dyslipidemias and prevention of atherosclerosis in animals. The evidence presented suggests that some of the approaches taken in animals may be ready for clinical trials in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hennekens CH: Increasing burden of cardiovascular disease: current knowledge and future directions for research on risk factors. Circulation 1998, 97:1095–1102.

    PubMed  CAS  Google Scholar 

  2. Gotto AM Jr: Cholesterol management in theory and practice. Circulation 1997, 96:4424–4430.

    PubMed  Google Scholar 

  3. Grundy SM: Statin trials and goals of cholesterol-lowering therapy. Circulation 1998, 97:1436–1439.

    PubMed  CAS  Google Scholar 

  4. Grossman M, Raper SE, Kozarsky K, et al.: Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolaemia. Nat Genet 1994, 6:335–341.

    Article  PubMed  CAS  Google Scholar 

  5. Grossman M, Rader DJ, Muller DW, et al.: A pilot study of ex vivo gene therapy for homozygous familial hypercholesterolaemia. Nat Med 1995, 1:1148–1154.

    Article  PubMed  CAS  Google Scholar 

  6. Rader DJ, Tietge UJ: Gene therapy for dyslipidemia: clinical prospects. Curr Atheroscler Rep 1999, 1:58–69.

    PubMed  CAS  Google Scholar 

  7. Belalcazar M, Chan L: Somatic gene therapy for dyslipidemias. J Lab Clin Med 1999, 134:194–214.

    Article  PubMed  CAS  Google Scholar 

  8. Kawashiri Ma M, Rader DJ: Gene therapy for lipid disorders. Curr Control Trials Cardiovasc Med 2000, 1:120–127.

    Article  PubMed  Google Scholar 

  9. Roth DA, Tawa NE Jr, O’Brien JM, Treco DA, Selden RF: Nonviral transfer of the gene encoding coagulation factor VIII in patients with severe hemophilia A. N Engl J Med 2001, 344:1735–1742.

    Article  PubMed  CAS  Google Scholar 

  10. Ferber D: Gene Therapy: safer and virus-free? Science 2001, 294:1638–1642.

    Article  PubMed  CAS  Google Scholar 

  11. Kay MA, Glorioso JC, Naldini L: Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 2001, 7:33–40.

    Article  PubMed  CAS  Google Scholar 

  12. VandenDriessche T, Vanslembrouck V, Goovaerts I, et al.: Long-term expression of human coagulation factor VIII and correction of hemophilia A after in vivo retroviral gene transfer in factor VIII-deficient mice. Proc Natl Acad Sci U S A 1999, 96:10379–10384.

    Article  PubMed  CAS  Google Scholar 

  13. Tsui LV, Kelly M, Zayek N, et al.: Production of human clotting Factor IX without toxicity in mice after vascular delivery of a lentiviral vector. Nat Biotechnol 2002, 20:53–57.

    Article  PubMed  CAS  Google Scholar 

  14. Oka K, Davis AR, Chan L: Recent advances in liver-directed gene therapy: implications for the treatment of dyslipidemia. Curr Opin Lipidol 2000, 11:179–186.

    Article  PubMed  CAS  Google Scholar 

  15. Summerford C, Samulski RJ: Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 1998, 72:1438–1445.

    PubMed  CAS  Google Scholar 

  16. Davidson BL, Stein CS, Heth JA, et al.: Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci U S A. 2000, 97:3428–3432.

    Article  PubMed  CAS  Google Scholar 

  17. Dong JY, Fan PD, Frizzell RA: Quantitative analysis of the packaging capacity of recombinant adeno- associated virus. Hum Gene Ther 1996, 7:2101–2112.

    PubMed  CAS  Google Scholar 

  18. Duan D, Yue Y, Yan Z, Engelhardt JF: A new dual-vector approach to enhance recombinant adeno-associated virus-mediated gene expression through intermolecular cis activation. Nat Med 2000, 6:595–598.

    Article  PubMed  CAS  Google Scholar 

  19. Kay MA, Manno CS, Ragni MV, et al.: Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 2000, 24:257–261.

    Article  PubMed  CAS  Google Scholar 

  20. Tobiasch E, Rabreau M, Geletneky K, et al.: Detection of adeno-associated virus DNA in human genital tissue and in material from spontaneous abortion. J Med Virol 1994, 44:215–222.

    Article  PubMed  CAS  Google Scholar 

  21. Donsante A, Vogler C, Muzyczka N, et al.: Observed incidence of tumorigenesis in long-term rodent studies of rAAV vectors. Gene Ther 2001, 8:1343–1346.

    Article  PubMed  CAS  Google Scholar 

  22. Bergelson JM, Cunningham JA, Droguett G, et al.: Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997, 275:1320–1323.

    Article  PubMed  CAS  Google Scholar 

  23. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR: Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 1993, 73:309–319.

    Article  PubMed  CAS  Google Scholar 

  24. Nemerow GR: Cell receptors involved in adenovirus entry. Virology 2000, 274:1–4.

    Article  PubMed  CAS  Google Scholar 

  25. Kochanek S: High-capacity adenoviral vectors for gene transfer and somatic gene therapy. Hum Gene Ther 1999, 10:2451–2459.

    Article  PubMed  CAS  Google Scholar 

  26. Parks RJ: Improvements in adenoviral vector technology: overcoming barriers for gene therapy. Clin Genet 2000, 58:1–11.

    Article  PubMed  CAS  Google Scholar 

  27. Parks RJ, Chen L, Anton M, et al.: A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc Natl Acad Sci U S A 1996, 93:13565–13570.

    Article  PubMed  CAS  Google Scholar 

  28. Umana P, Gerdes CA, Stone D, et al.: Efficient FLPe recombinase enables scalable production of helper-dependent adenoviral vectors with negligible helper-virus contamination. Nat Biotechnol 2001, 19:582–585.

    Article  PubMed  CAS  Google Scholar 

  29. Sandig V, Youil R, Bett AJ, et al.: Optimization of the helper-dependent adenovirus system for production and potency in vivo. Proc Natl Acad Sci U S A 2000, 97:1002–1007.

    Article  PubMed  CAS  Google Scholar 

  30. Pastore L, Morral N, Zhou H, et al.: Use of a liver-specific p romoter reduces immune response to the transgene in adenoviral vectors. Hum Gene Ther 1999, 10:1773–1781.

    Article  PubMed  CAS  Google Scholar 

  31. Morral N, O’Neal W, Rice K, et al.: Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons. Proc Natl Acad Sci U S A 1999, 96:12816–12821.

    Article  PubMed  CAS  Google Scholar 

  32. Schnell MA, Zhang Y, Tazelaar J, et al.: Activation of innate immunity in nonhuman primates following intraportal administration of adenoviral vectors. Mol Ther 2001, 3:708–722.

    Article  PubMed  CAS  Google Scholar 

  33. Toietta G, Pastore L, Cerullo V, et al.: Generation of helper-dpendent adenoviral vectors by homologous recombination. Mol Ther 2002, 5:204–210.

    Article  PubMed  CAS  Google Scholar 

  34. Eggerman TL, Mondoro TH, Lozier JN, Vostal JG: Adenoviral vectors do not induce, inhibit, or potentiate human platelet aggregation. Hum Gene Ther 2002, 13:125–128.

    Article  PubMed  CAS  Google Scholar 

  35. Parks R, Evelegh C, Graham F: Use of helper-dependent adenoviral vectors of alternative serotypes permits repeat vector administration. Gene Ther 1999, 6:1565–1573.

    Article  PubMed  CAS  Google Scholar 

  36. Kim IH, Jozkowicz A, Piedra PA, Oka K, Chan L: Lifetime correction of genetic deficiency in mice with a single injection of helper-dependent adenoviral vector. Proc Natl Acad Sci U S A 2001, 98:13282–13287.

    Article  PubMed  CAS  Google Scholar 

  37. Shayakhmetov DM, Carlson CA, Stecher H, et al.: A high-capacity, capsid-modified hybrid adenovirus/adeno-associated virus vector for stable transduction of human hematopoietic cells. J Virol 2002, 76:1135–1143.

    PubMed  CAS  Google Scholar 

  38. Zheng C, Baum BJ, Iadarola MJ, O’Connell BC: Genomic integration and gene expression by a modified adenoviral vector. Nat Biotechnol 2000, 18:176–180.

    Article  PubMed  CAS  Google Scholar 

  39. Soifer H, Higo C, Kazazian HH Jr, et al.: Stable integration of transgenes delivered by a retrotransposon- adenovirus hybrid vector. Hum Gene Ther 2001, 12:1417–1428.

    Article  PubMed  CAS  Google Scholar 

  40. Ross R: Atherosclerosis—an inflammatory disease. N Engl J Med 1999, 340:115–126.

    Article  PubMed  CAS  Google Scholar 

  41. Ishibashi S, Brown MS, Goldstein JL, et al.: Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest 1993, 92:883–893.

    PubMed  CAS  Google Scholar 

  42. Kozarsky KF, Jooss K, Donahee M, Strauss JF 3rd, Wilson JM: Effective treatment of familial hypercholesterolaemia in the mouse model using adenovirus-mediated transfer of the VLDL receptor gene. Nat Genet 1996, 13:54–62.

    Article  PubMed  CAS  Google Scholar 

  43. Kozarsky KF, McKinley DR, Austin LL, et al.: In vivo correction of low density lipoprotein receptor deficiency in the Watanabe heritable hyperlipidemic rabbit with recombinant adenoviruses. J Biol Chem 1994, 269:13695–13702.

    PubMed  CAS  Google Scholar 

  44. Chen SJ, Rader DJ, Tazelaar J, et al.: Prolonged correction of hyperlipidemia in mice with familial hypercholesterolemia using an adeno-associated viral vector expressing very-low-density lipoprotein receptor. Mol Ther 2000, 2:256–261.

    Article  PubMed  CAS  Google Scholar 

  45. Nomura S, Oka K, Merched A, et al.: Long-term reversal of hypercholesterolemia by a single injection of a helper-dependent adenovirus expressing LDL receptor markedly inhibits aortic atherosclerosis progression in a mouse model of familial hypercholesterolemia. Circulation 2001, 104:II-318.

    Google Scholar 

  46. Maione D, Rocca CD, Giannetti P, et al.: An improved helper-dependent adenoviral vector allows persistent gene expression after intramuscular delivery and overcomes preexisting immunity to adenovirus. Proc Natl Acad Sci U S A 2001, 98:5986–5991.

    Article  PubMed  CAS  Google Scholar 

  47. Kobayashi K, Oka K, Forte T, et al.: Reversal of hypercholesterolemia in low density lipoprotein receptor knockout mice by adenovirus-mediated gene transfer of the very low density lipoprotein receptor. J Biol Chem 1996, 271:6852–6860.

    Article  PubMed  CAS  Google Scholar 

  48. Oka K, Pastore L, Kim IH, et al.: Long-term stable correction of low-density lipoprotein receptor- deficient mice with a helper-dependent adenoviral vector expressing the very low-density lipoprotein receptor. Circulation 2001, 103:1274–1281.

    PubMed  CAS  Google Scholar 

  49. Kashyap VS, Santamarina-Fojo S, Brown DR, et al.: Apolipoprotein E deficiency in mice: gene replacement and prevention of atherosclerosis using adenovirus vectors. J Clin Invest 1995, 96:1612–1620.

    PubMed  CAS  Google Scholar 

  50. Thorngate FE, Rudel LL, Walzem RL, Williams DL: Low levels of extrahepatic nonmacrophage ApoE inhibit atherosclerosis without correcting hypercholesterolemia in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 2000, 20:1939–1945.

    PubMed  CAS  Google Scholar 

  51. Tsukamoto K, Tangirala R, Chun SH, Pure E, Rader DJ: Rapid regression of atherosclerosis induced by liver-directed gene transfer of ApoE in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 1999, 19:2162–2170.

    PubMed  CAS  Google Scholar 

  52. Yamada N, Inoue I, Kawamura M, et al.: Apolipoprotein E prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbits. J Clin Invest 1992, 89:706–711.

    PubMed  CAS  Google Scholar 

  53. Tsukamoto K, Tangirala RK, Chun S, et al.: Hepatic expression of apolipoprotein E inhibits progression of atherosclerosis without reducing cholesterol levels in LDL receptor-deficient mice. Mol Ther 2000, 1:189–194.

    Article  PubMed  CAS  Google Scholar 

  54. Tangirala RK, Pratico D, FitzGerald GA, et al.: Reduction of isoprostanes and regression of advanced atherosclerosis by apolipoprotein E. J Biol Chem 2001, 276:261–266.

    Article  PubMed  CAS  Google Scholar 

  55. Woollett LA, Osono Y, Herz J, Dietschy JM: Apolipoprotein E competitively inhibits receptor-dependent low density lipoprotein uptake by the liver but has no effect on cholesterol absorption or synthesis in the mouse. Proc Natl Acad Sci U S A 1995, 92:12500–12504.

    Article  PubMed  CAS  Google Scholar 

  56. van Dijk KW, van Vlijmen BJ, van’t Hof HB, et al.: In LDL receptor-deficient mice, catabolism of remnant lipoproteins requires a high level of apoE but is inhibited by excess apoE. J Lipid Res 1999, 40:336–344.

    PubMed  Google Scholar 

  57. Maugeais C, Tietge UJ, Tsukamoto K, Glick JM, Rader DJ: Hepatic apolipoprotein E expression promotes very low density lipoprotein-apolipoprotein B production in vivo in mice. J Lipid Res 2000, 41:1673–1679.

    PubMed  CAS  Google Scholar 

  58. Huang Y, Liu XQ, Rall SC Jr, Mahley RW: Apolipoprotein E2 reduces the low density lipoprotein level in transgenic mice by impairing lipoprotein lipase-mediated lipolysis of triglyceride-rich lipoproteins. J Biol Chem 1998, 273:17483–17490.

    Article  PubMed  CAS  Google Scholar 

  59. Kozarsky KF, Bonen DK, Giannoni F, et al.: Hepatic expression of the catalytic subunit of the apolipoprotein B mRNA editing enzyme (apobec-1) ameliorates hypercholesterolemia in LDL receptor-deficient rabbits. Hum Gene Ther 1996, 7:943–957.

    PubMed  CAS  Google Scholar 

  60. Hughes SD, Rouy D, Navaratnam N, Scott J, Rubin EM: Gene transfer of cytidine deaminase apoBEC-1 lowers lipoprotein(a) in transgenic mice and induces apolipoprotein B editing in rabbits. Hum Gene Ther 1996, 7:39–49.

    PubMed  CAS  Google Scholar 

  61. Strauss JG, Frank S, Kratky D, et al.: Adenovirus-mediated rescue of lipoprotein lipase-deficient mice. Lipolysis of triglyceride-rich lipoproteins is essential for high density lipoprotein maturation in mice. J Biol Chem 2001, 276:36083–36090.

    Article  PubMed  CAS  Google Scholar 

  62. Zsigmond E, Kobayashi K, Tzung KW, et al.: Adenovirus-mediated gene transfer of human lipoprotein lipase ameliorates the hyperlipidemias associated with apolipoprotein E and LDL receptor deficiencies in mice. Hum Gene Ther 1997, 8:1921–1933.

    PubMed  CAS  Google Scholar 

  63. Enjoji M, Wang F, Nakamuta M, Chan L, Teng BB: Hammerhead ribozyme as a therapeutic agent for hyperlipidemia: production of truncated apolipoprotein B and hypolipidemic effects in a dyslipidemia murine model. Hum Gene Ther 2000, 11:2415–2430.

    Article  PubMed  CAS  Google Scholar 

  64. Kannel WB: Range of serum cholesterol values in the population developing coronary artery disease. Am J Cardiol 1995, 76:69C-77C.

    Article  PubMed  CAS  Google Scholar 

  65. Rubin EM, Krauss RM, Spangler EA, Verstuyft JG, Clift SM: Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI. Nature 1991, 353:265–267.

    Article  PubMed  CAS  Google Scholar 

  66. Duverger N, Kruth H, Emmanuel F, et al.: Inhibition of atherosclerosis development in cholesterol-fed human apolipoprotein A-I-transgenic rabbits. Circulation 1996, 94:713–717.

    PubMed  CAS  Google Scholar 

  67. Rong JX, Li J, Reis ED, et al.: Elevating high-density lipoprotein cholesterol in apolipoprotein E- deficient mice remodels advanced atherosclerotic lesions by decreasing macrophage and increasing smooth muscle cell content. Circulation 2001, 104:2447–2452.

    PubMed  CAS  Google Scholar 

  68. Benoit P, Emmanuel F, Caillaud JM, et al.: Somatic gene transfer of human ApoA-I inhibits atherosclerosis progression in mouse models. Circulation 1999, 99:105–110.

    PubMed  CAS  Google Scholar 

  69. Tangirala RK, Tsukamoto K, Chun SH, et al.: Regression of atherosclerosis induced by liver-directed gene transfer of apolipoprotein A-I in mice. Circulation 1999, 100:1816–1822.

    PubMed  CAS  Google Scholar 

  70. Belalcazar LM, Merched A, Carr B, et al.: Somatic gene therapy for long-term stable correction of genetic HDL deficiency and atherosclerotic disease in mice using a novel nontoxic adenoviral human apoA-I vector. Circulation 2000, 102:II163-II164.

    Google Scholar 

  71. Inazu A, Brown ML, Hesler CB, et al.: Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N Engl J Med 1990, 323:1234–1238.

    Article  PubMed  CAS  Google Scholar 

  72. Plump AS, Masucci-Magoulas L, Bruce C, et al.: Increased atherosclerosis in ApoE and LDL receptor gene knock-out mice as a result of human cholesteryl ester transfer protein transgene expression. Arterioscler Thromb Vasc Biol 1999, 19:1105–1110.

    PubMed  CAS  Google Scholar 

  73. Zhong S, Sharp DS, Grove JS, et al.: Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels. J Clin Invest 1996, 97:2917–2923.

    Article  PubMed  CAS  Google Scholar 

  74. Foger B, Chase M, Amar MJ, et al.: Cholesteryl ester transfer protein corrects dysfunctional high density lipoproteins and reduces aortic atherosclerosis in lecithin cholesterol acyltransferase transgenic mice. J Biol Chem 1999, 274:36912–36920.

    Article  PubMed  CAS  Google Scholar 

  75. Hoeg JM, Santamarina-Fojo S, Berard AM, et al.: Overexpression of lecithin:cholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis. Proc Natl Acad Sci U S A 1996, 93:11448–11453.

    Article  PubMed  CAS  Google Scholar 

  76. Berard AM, Foger B, Remaley A, et al.: High plasma HDL concentrations associated with enhanced atherosclerosis in transgenic mice overexpressing lecithin-cholesteryl acyltransferase. Nat Med 1997, 3:744–749.

    Article  PubMed  CAS  Google Scholar 

  77. Seguret-Mace S, Latta-Mahieu M, Castro G, et al.: Potential gene therapy for lecithin-cholesterol acyltransferase (LCAT)-deficient and hypoalphalipoproteinemic patients with adenovirus- mediated transfer of human LCAT gene. Circulation 1996, 94:2177–2184.

    PubMed  CAS  Google Scholar 

  78. Hegele RA, Little JA, Vezina C, et al.: Hepatic lipase deficiency increases plasma cholesterol but reduces susceptibility t o atherosclerosis in apolipoprotein E-deficient mice. J Biol Chem 1997, 272:13570–13575.

    Article  Google Scholar 

  79. Dugi KA, Vaisman BL, Sakai N, et al.: Adenovirus-mediated expression of hepatic lipase in LCAT transgenic mice. J Lipid Res 1997, 38:1822–1832.

    PubMed  CAS  Google Scholar 

  80. Kozarsky KF, Donahee MH, Rigotti A, et al.: Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature 1997, 387:414–417.

    Article  PubMed  CAS  Google Scholar 

  81. Kozarsky KF, Donahee MH, Glick JM, Krieger M, Rader DJ: Gene transfer and hepatic overexpression of the HDL receptor SR-BI reduces atherosclerosis in the cholesterol-fed LDL receptor-deficient mouse. Arterioscler Thromb Vasc Biol 2000, 20:721–727.

    PubMed  CAS  Google Scholar 

  82. Spady DK, Cuthbert JA, Willard MN, Meidell RS: Over-expression of cholesterol 7alpha-hydroxylase (CYP7A) in mice lacking the low density lipoprotein (LDL) receptor gene. LDL transport and plasma LDL concentrations are reduced. J Biol Chem 1998, 273:126–132.

    Article  PubMed  CAS  Google Scholar 

  83. Balter M: Gene therapy on trial. Science 2000, 288:951–957.

    Article  Google Scholar 

  84. Assessment of Adenoviral Vector Safety and Toxicity: Report of the National Institutes of Health Recombinant DNA Advisory Committee. Hum Gene Ther 2002, 13:3–13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oka, K., Chan, L. Recent advances in liver-directed gene therapy for dyslipidemia. Curr Atheroscler Rep 4, 199–207 (2002). https://doi.org/10.1007/s11883-002-0020-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-002-0020-8

Keywords

Navigation