Skip to main content
Log in

Methods for aeroallergen sampling

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Air sampling provides information about the bioaerosol composition of the atmosphere. Principal methods of volumetric sample collection include impaction, impingement, and filtration. Many instruments have been developed based on these collection methods. The most widely used devices are slit impactors, rotating arm impactors, and sieve impactors. Samples can be analyzed by various methods, with microscopy and culturing the most important approaches; however, immunoassays, molecular methods such as polymerase chain reaction, and other new techniques are becoming more widely used to analyze samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Gregory PH: The Microbiology of the Atmosphere, edn 2. New York: Halstead Press; 1973.

    Google Scholar 

  2. Lacey J, Venette J: Outdoor air sampling techniques. In Bioaerosols Handbook. Edited by Cox CS, Wathes CM. Boca Raton: Lewis Publishers; 1995:407–471.

    Google Scholar 

  3. Lacey J: Spore dispersal: its role in ecology and disease: the British contribution to fungal aerobiology. Mycol Res 1996, 100:641–660.

    Article  Google Scholar 

  4. Comtois P: The experimental research of Charles H. Blackley. Aerobiologia 1995, 11:63–68.

    Article  Google Scholar 

  5. Levetin E, Horner WE: Fungal aerobiology: exposure and measurement. In Fungal Allergy and Pathogenicity: Chemical Immunology, vol 81. Edited by Breitenbach M, Craeri R, Lehrer SB. Basel: Karger; 2002:10–27.

    Chapter  Google Scholar 

  6. Crook B: Inertial samplers: Biological perspectives. In Bioaerosols Handbook. Edited by Cox CS, Wathes CM. Boca Raton: Lewis Publishers; 1995:247–267.

    Google Scholar 

  7. Buttner MP, Willeke K, Grinsphun SA: Sampling and analysis of airborne microorganisms. In Manual of Environmental Microbiology, edn 2. Edited by Hurst CJ. Washington, DC: ASM Press; 2002:814–826. This chapter provides a thorough introduction to air sampling theory, instruments, and performance. Methods of analysis are also discussed in detail.

    Google Scholar 

  8. Muilenberg ML: Sampling devices. Immunol Allergy Clin N Am 2003, 23:337–355.

    Article  Google Scholar 

  9. Solomon WR: How ill the wind? Issues in aeroallergen sampling. J Allergy Clin Immunol 2003, 112:3–8.

    Article  PubMed  Google Scholar 

  10. Mandrioli P, Comtois P, Dominguez-Vilches E, et al.: Sampling: principles and techniques. In Methods in Aerobiology. Edited by Mandrioli P, Comtois P, Levizzani V. Bologna, Italy: Petagora Editrice; 1998:47–112.

    Google Scholar 

  11. Burge HA: Monitoring for airborne allergens. Ann Allergy 1992, 69:9–18.

    PubMed  CAS  Google Scholar 

  12. Lin X, Reponen TA, Willeke K, et al.: Long-term sampling of airborne bacteria and fungi into a non-evaporating liquid. Atmos Environ 1999, 33:4291–4298.

    Article  CAS  Google Scholar 

  13. Parvaneh S, Ahlif A, Elfman LHM, et al.: A new method for collecting airborne allergens. Allergy 2000, 55:1148–1154.

    Article  PubMed  CAS  Google Scholar 

  14. Willeke K, Macher JM: Air sampling. In Bioaerosols: Assessment and Control. Edited by Macher JM. Cincinnati: ACGIH; 1999:111–1125.

    Google Scholar 

  15. Portnoy JM, Barnes CS, Kennedy K: Sampling for indoor fungi. J Allergy Clin Immunol 2004, 113:189–198. This review describes the methods used for conducting sampling to measure mold exposure in the indoor environment. The focus is on air sampling and analysis, but dust sampling is described as well. The need for standardized sampling procedures is stressed.

    Article  PubMed  Google Scholar 

  16. Hirst J: An automatic volumetric spore trap. Ann Appl Biol 1952, 39:257–265.

    Article  Google Scholar 

  17. Ogden EC, Raynor GS, Hayes JV, et al.: Manual for Sampling Airborne Pollen. New York: Hafner Press; 1974.

    Google Scholar 

  18. Solomon WR, Burge HA, Boise JR, Becker M: Comparative particle recoveries by the retracting rotorod, rotoslide, and Burkard spore trap sampling in a compact array. Int J Biometeor 1980, 24:107–116.

    Article  Google Scholar 

  19. Gallup D, Purves J, Burge H: A disposable sampler for collecting volumetric air samples onto agar media. J Allergy Clin Immunol 2004, 113:S138.

    Article  Google Scholar 

  20. Macher JM, Streifel AJ, Vesley D: Problem buildings, laboratories and hospitals. In Bioaerosols Handbook. Edited by Cox CS, Wathes CM. Boca Raton, FL: Lewis Publishers; 1995:505–530.

    Google Scholar 

  21. Aizenberg V, Reponen T, Grinspun SA, Willeke K: Performance of Air-O-Cell, Burkard, and Button samplers for total enumeration of airborne spores. AIHAJ 2000, 61:855–864.

    Article  PubMed  CAS  Google Scholar 

  22. Adhikaria A, Martuzeviciusa D, Reponen T: Performance of the Button Personal inhalable sampler for the measurement of outdoor aeroallergens. Atmos Environ 2003, 37:4723–4733.

    Article  CAS  Google Scholar 

  23. Graham JAH, Pavlicek PK, Sercombe JK, et al.: The nasal air: a device for sampling inhaled aeroallergens. Ann Allergy 2000, 84:599–604.

    Article  CAS  Google Scholar 

  24. Mitakakis TZ, Tovey ER, Xuan W, Marks GB: Personal exposure to allergenic pollen and mould spores in inland New South Wales, Australia. Clin Exp Allergy 2000, 30:1733–1739.

    Article  PubMed  CAS  Google Scholar 

  25. Gore RB, Hadi EA, Craven M, et al.: Personal exposure to house dust mite allergen in bed: nasal air sampling and reservoir allergen levels. Clin Exp Allergy 2002, 32:856–859.

    Article  PubMed  CAS  Google Scholar 

  26. Burge HA: An update on pollen and fungal spore aerobiology. J Allergy Clin Immunol 2002, 110:544–552.

    Article  PubMed  Google Scholar 

  27. Kapyla M, Penttinen A: An evaluation of the microscopic counting methods of the tape in Hirst-Burkard pollen and spore trap. Grana 1981, 20:131–141.

    Article  Google Scholar 

  28. Comtois P, Alcazar P, Neron D: Pollen count statistics and its relevance to precision. Aerobiologia 1999, 15:19–28.

    Article  Google Scholar 

  29. Sterling M, Rogers C, Levetin E: An evaluation of two methods used for microscopic analysis of airborne fungal spore concentrations from the Burkard Spore Trap. Aerobiologia 1999, 15:9–18.

    Article  Google Scholar 

  30. Miller JD, Young JC: The use of ergosterol to measure exposure to fungal propagules in indoor air. AIHA J 1997, 58:39–43.

    Article  CAS  Google Scholar 

  31. Dillon HK, Miller JD, Sorenson WG, et al.: 1999. Review of methods applicable to the assessment of mold exposure to children. Environ Health Perspect 1999, 107(Suppl3):473–480.

    PubMed  Google Scholar 

  32. Rylander R: Indoor air-related effects and airborne (1->3)-b-D-glucan. Environ Health Perspect 1999, 107(Suppl3):501–503.

    PubMed  Google Scholar 

  33. Yike I, Allan T, Sorenson WG, Dearborn DG: Highly sensitive protein translation assay for trichothecene toxicity in airborne particulates: comparison with cytotoxicity assays. Appl Environ Microbiol 1999, 65:88–94.

    PubMed  CAS  Google Scholar 

  34. Sorenson WG, Frazer DG, Jarvis BB, et al.: Trichothecene mycotoxins in aerosolized conidia of Stachybotrys atra. Appl Environ Microbiol 1987, 53:1370–1375.

    PubMed  CAS  Google Scholar 

  35. Skaug MA, Eduard W, Stormer F: Ochratoxin A in airborne dust and fungal conidia. Mycopathologia 2000, 151:93–98.

    Article  Google Scholar 

  36. Horner WE, Levetin E, Lehrer SB: Aerobiology. In Allergens and Allergen Immunotherapy, edn 3. Edited by Lockley RF, Bukantz SC. Dekker; 2004, In press.

  37. Ryan TJ, Whitehead LW, Connor TH, Burau KD: Survey of the Asp f 1 allergen in office environments. Appl Occup Environ Hyg 2001, 16:679–684.

    Article  PubMed  CAS  Google Scholar 

  38. Schmechel D, Gorny RL, Simpson JP, et al.: Limitations of monoclonal antibodies for monitoring of fungal aerosols using Penicillium brevicompactum as a model fungus. J Immunol Methods 2003, 283:235–245.

    Article  PubMed  CAS  Google Scholar 

  39. Williams RH, Ward E, McCartney AH: Methods for integrated air sampling and DNA analysis for detection of airborne fungal spores. Appl Environ Microbiol 2001, 67:2453–2459.

    Article  PubMed  CAS  Google Scholar 

  40. Wakefield AE: DNA sequences identical to Pneumocystis carinii f. sp. carinii and Pneumocystis carinii f. sp. hominis in samples of air spora. J Clin Microbiol 1996, 34:1754–1759.

    PubMed  CAS  Google Scholar 

  41. Calderon C, Ward E, Freeman J, et al.: Detection of airborne inoculum of Leptosphaeria maculans and Pyrenopeziza brassicae in oilseed rape crops by polymerase chain reaction (PCR) assays. Plant Pathol 2002, 51:303–310. This study describes the use of PCR to detect airborne spores of two plant pathogenic fungi. DNA was extracted from spores caught on spore trap samples and then amplified. The potential of this method in air sampling is discussed.

    Article  CAS  Google Scholar 

  42. Calderon C, Ward E, Freeman J, McCartney HA: Detection of airborne fungal spores sampled by rotating-arm and Hirst-type spore traps using polymerase chain reaction assays. J Aerosol Sci 2002, 33:283–296.

    Article  CAS  Google Scholar 

  43. Haugland RA, Vesper SJ, Wymer LJ: Quantitative measurement of Stachybotrys chartarum conidia using real time detection of PCR products with the TaqMan fluorogenic probe system. Mol Cell Probes 1999, 13:329–340.

    Article  PubMed  CAS  Google Scholar 

  44. Zhou G, Whong W-Z, Ong T, Chen B: Development of a fungusspecific PCR assay for detecting low-level fungi in an indoor environment. Mol Cell Probes 2000, 14:339–348.

    Article  PubMed  CAS  Google Scholar 

  45. Górny RL, Reponen T, Willeke K, et al.: Fungal fragments as indoor air biocontaminants. Appl Environ Microbiol 2002, 68:3522–3531.

    Article  PubMed  CAS  Google Scholar 

  46. Day JP, Kell DB, Griffith GW: Differentiation of Phytophthora infestans Sporangia from other airborne biological particles by flow cytometry. Appl Environ Microbiol 2002, 68:37–45.

    Article  PubMed  CAS  Google Scholar 

  47. Prigione V, Lingua G, Filipello Marchisio V: Development and use of flow cytometry for detection of airborne fungi. Appl Environ Microbiol 2004, 70:1360–1365.

    Article  PubMed  CAS  Google Scholar 

  48. Boucher A, Hidalgo PJ, Thonnat M, et al.: Development of a semi-automatic system for pollen recognition. Aerobiologia 2002, 18:195–201.

    Article  Google Scholar 

  49. Ronneberger O, Schultz E, Burkhardt H: Automated pollen recognition using 3D volume images from fluorescence microscopy. Aerobiologia 2002, 18:107–115.

    Article  Google Scholar 

  50. Benyon FHL, Jones AS, Tovey ER, Stone G: Differentiation of allergenic fungal spores by image analysis, with application to aerobiological counts. Aerobiologia 1999, 15:211–223.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levetin, E. Methods for aeroallergen sampling. Curr Allergy Asthma Rep 4, 376–383 (2004). https://doi.org/10.1007/s11882-004-0088-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-004-0088-z

Keywords

Navigation