Skip to main content
Log in

Atypical predictive processing during visual statistical learning in children with developmental dyslexia: an event-related potential study

  • Published:
Annals of Dyslexia Aims and scope Submit manuscript

Abstract

Previous research suggests that individuals with developmental dyslexia perform below typical readers on non-linguistic cognitive tasks involving the learning and encoding of statistical-sequential patterns. However, the neural mechanisms underlying such a deficit have not been well examined. The aim of the present study was to investigate the event-related potential (ERP) correlates of sequence processing in a sample of children diagnosed with dyslexia using a non-linguistic visual statistical learning paradigm. Whereas the response time data suggested that both typical and atypical readers learned the statistical patterns embedded in the task, the ERP data suggested otherwise. Specifically, ERPs of the typically developing children (n = 12) showed a P300-like response indicative of learning, whereas the children diagnosed with a reading disorder (n = 8) showed no such ERP effects. These results may be due to intact implicit motor learning in the children with dyslexia but delayed attention-dependent predictive processing. These findings are consistent with other evidence suggesting that differences in statistical learning ability might underlie some of the reading deficits observed in developmental dyslexia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arciuli, J., & Simpson, I. C. (2012). Statistical learning is related to reading ability in children and adults. Cognitive Science, 36, 286–304.

    Article  Google Scholar 

  • Baldwin, K. B., & Kutas, M. (1997). An ERP analysis of implicit structured sequence learning. Psychophysiology, 34(1), 74–86.

    Article  Google Scholar 

  • Batterink, L. J., Reber, P. J., Neville, H. J., & Paller, K. A. (2015). Implicit and explicit contributions to statistical learning. Journal of Memory and Language, 83, 62–78.

    Article  Google Scholar 

  • Bennett, I. J., Romano, J. C., Howard, J. H., & Howard, D. V. (2008). Two forms of implicit learning in young adults with dyslexia. Annals of the New York Academy of Sciences, 1145, 184–198. https://doi.org/10.1196/annals.1416.006.

    Article  Google Scholar 

  • Bradley, L., & Bryant, P. E. (1983). Categorizing sounds and learning to read: A causal connection. Nature.

  • Carrión, R. E., & Bly, B. M. (2007). Event-related potential markers of expectation violation in an artificial grammar learning task. Neuroreport, 18(2), 191–195.

    Article  Google Scholar 

  • Conlon, E. G., Wright, C. M., Norris, K., & Chekaluk, E. (2011). Does a sensory processing deficit explain counting accuracy on rapid visual sequencing tasks in adults with and without dyslexia? Brain and Cognition, 76(1), 197–205.

    Article  Google Scholar 

  • Conway, C. M., Bauernschmidt, A., Huang, S. S., & Pisoni, D. B. (2010). Implicit statistical learning in language processing: Word predictability is the key. Cognition, 114, 356–371.

    Article  Google Scholar 

  • Dale, R., Duran, N. D., & Morehead, J. R. (2012). Prediction during statistical learning, and implications for the implicit/explicit divide. Advances in Cognitive Psychology, 8(2), 196–209.

    Article  Google Scholar 

  • Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21.

    Article  Google Scholar 

  • Du, W., & Kelly, S. W. (2013). Implicit sequence learning in dyslexia: A within-sequence comparison of first-and higher-order information. Annals of Dyslexia, 63(2), 154–170.

    Article  Google Scholar 

  • Eden, G. F., VanMeter, J. W., Rumsey, J. M., Maisog, J. M., Woods, R. P., & Zeffiro, T. A. (1996). Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature, 382(6586), 66–69.

    Article  Google Scholar 

  • Elliott, J. G., & Grigorenko, E. L. (2014). The dyslexia debate (No. 14). Cambridge University Press.

  • Folia, V., Uddén, J., Forkstam, C., Ingvar, M., Hagoort, P., & Petersson, K. M. (2008). Implicit learning and dyslexia. Annals of the New York Academy of Sciences, 1145(1), 132–150.

    Article  Google Scholar 

  • Gabay, Y., Thiessen, E. D., & Holt, L. L. (2015). Impaired statistical learning in developmental dyslexia. Journal of Speech, Language, and Hearing Research, 58(3), 934–945.

    Article  Google Scholar 

  • Gabrieli, J. D. (2009). Dyslexia: A new synergy between education and cognitive neuroscience. Science, 325(5938), 280–283.

    Article  Google Scholar 

  • Goswami, U. (2015). Sensory theories of developmental dyslexia: Three challenges for research. Nature Reviews Neuroscience, 16(1), 43–54.

    Article  Google Scholar 

  • Hood, M., & Conlon, E. (2004). Visual and auditory temporal processing and early reading development. Dyslexia, 10(3), 234–252.

  • Howard, J. H., Howard, D. V., Japikse, K. C., & Eden, G. F. (2006). Dyslexics are impaired on implicit higher-order sequence learning, but not on implicit spatial context learning. Neuropsychologia, 44(7), 1131–1144.

    Article  Google Scholar 

  • Jiménez-Fernández, G., Vaquero, J. M., Jiménez, L., & Defior, S. (2011). Dyslexic children show deficits in implicit sequence learning, but not in explicit sequence learning or contextual cueing. Annals of Dyslexia, 61(1), 85–110.

    Article  Google Scholar 

  • Jost, E., Conway, C. M., Purdy, J. D., Walk, A. M., & Hendricks, M. A. (2015). Exploring the neurodevelopment of visual statistical learning using event-related brain potentials. Brain Research. https://doi.org/10.1016/j.brainres.2014.10.017.

  • Kidd, E. (2012). Implicit statistical learning is directly associated with the acquisition of syntax. Developmental Psychology, 48, 171–184.

    Article  Google Scholar 

  • Kidd, E., & Arciuli, J. (2016). Individual differences in statistical learning predict children’s comprehension of syntax. Child Development, 87, 184–193.

    Article  Google Scholar 

  • Krishnan, S., Watkins, K. E., & Bishop, D. V. (2016). Neurobiological basis of language learning difficulties. Trends in Cognitive Sciences, 20(9), 701–714.

    Article  Google Scholar 

  • Laasonen, M., Väre, J., Oksanen-Hennah, H., Leppämäki, S., Tani, P., Harno, H., Hokkanen, L., Pothos, E., & Cleeremans, A. (2014). Project DyAdd: Implicit learning in adult dyslexia and ADHD. Annals of Dyslexia, 64(1), 1–33.

    Article  Google Scholar 

  • Lee, T. W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation, 11(2), 417–441.

    Article  Google Scholar 

  • Menghini, D., Hagberg, G. E., Petrosini, L., Bozzali, M., Macaluso, E., Caltagirone, C., & Vicari, S. (2008). Structural correlates of implicit learning deficits in subjects with developmental dyslexia. Annals of the New York Academy of Sciences, 1145(1), 212–221.

    Article  Google Scholar 

  • Misyak, J. B., Christiansen, M. H., & Tomblin, J. B. (2010). Sequential expectations: The role of prediction-based learning in language. Topics in Cognitive Science, 2, 138–153.

    Article  Google Scholar 

  • Nicolson, R. I., & Fawcett, A. J. (1999). Developmental dyslexia: The role of the cerebellum. Dyslexia, 5(3), 155–177.

    Article  Google Scholar 

  • Nicolson, R. I., Fawcett, A. J., & Dean, P. (2001). Developmental dyslexia: The cerebellar deficit hypothesis. Trends in Neurosciences, 24(9), 508–511.

    Article  Google Scholar 

  • Nigro, L., Jiménez-Fernández, G., Simpson, I. C., & Defior, S. (2016). Implicit learning of non-linguistic and linguistic regularities in children with dyslexia. Annals of Dyslexia, 66(2), 202–218.

    Article  Google Scholar 

  • Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: evidence from performance measures. Cognitive psychology, 19(1), 1–32.

  • Orban, P., Lungu, O., & Doyon, J. (2008). Motor sequence learning and developmental dyslexia. Annals of the New York Academy of Sciences, 1145(1), 151–172.

    Article  Google Scholar 

  • Orton, S. (1995). Definition of dyslexia; re-port from committee of members. Perspectives, 21, 16–17.

    Google Scholar 

  • Papagiannopoulou, E. A., & Lagopoulos, J. (2017). P300 event-related potentials in children with dyslexia. Annals of Dyslexia, 67(1), 99–108.

    Article  Google Scholar 

  • Pavlidou, E. V., & Williams, J. M. (2014). Implicit learning and reading: Insights from typical children and children with developmental dyslexia using the artificial grammar learning (artificial grammar learning) paradigm. Research in Developmental Disabilities, 35(7), 1457–1472.

    Article  Google Scholar 

  • Pennington, B. F. (2008). Diagnosing learning disorders: A neuropsychological framework. New York: Guilford Press.

    Google Scholar 

  • Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical neurophysiology, 118(10), 2128–2148.

  • Robertson, E. M. (2007). The serial reaction time task: implicit motor skill learning? Journal of Neuroscience, 27(38), 10073–10075.

  • Romberg, A. R., & Saffran, J. R. (2010). Statistical learning and language acquisition. Wiley Interdisciplinary Reviews: Cognitive Science, 1(6), 906–914.

    Google Scholar 

  • Rüsseler, J., Hennighausen, E., Münte, T. F., & Rösler, F. (2003). Differences in incidental and intentional learning of sensorimotor sequences as revealed by event-related brain potentials. Cognitive Brain Research, 15(2), 116–126.

    Article  Google Scholar 

  • Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294), 1926–1928.

    Article  Google Scholar 

  • Sawi, O. M., & Rueckl, J. (2018). Reading and the neurocognitive bases of statistical learning. Scientific Studies of Reading. https://doi.org/10.1080/10888438.2018.1457681.

  • Schiff, R., Sasson, A., Star, G., & Kahta, S. (2017). The role of feedback in implicit and explicit artificial grammar learning: a comparison between dyslexic and non-dyslexic adults. Annals of dyslexia, 67(3), 333–355.

  • Schmalz, X., Altoè, G., & Mulatti, C. (2017). Statistical learning and dyslexia: A systematic review. Annals of Dyslexia, 67(2), 147–162.

    Article  Google Scholar 

  • Shafto, C. L., Conway, C. M., Field, S. L., & Houston, D. M. (2012). Visual sequence learning in infancy: Domain-general and domain-specific associations with language. Infancy, 17, 247–271.

    Article  Google Scholar 

  • Shaywitz, S. E., & Shaywitz, B. A. (2008). Paying attention to reading: The neurobiology of reading and dyslexia. Development and Psychopathology, 20(04), 1329–1349.

    Article  Google Scholar 

  • Shaywitz, S. E., Shaywitz, B. A., Pugh, K. R., Fulbright, R. K., Constable, R. T., Mencl, W. E., et al. (1998). Functional disruption in the organization of the brain for reading in dyslexia. Proceedings of the National Academy of Sciences, 95(5), 2636–2641.

  • Snowling, M. J. (2000). Language and literacy skills: Who is at risk and why. Speech and language impairments in children: Causes, characteristics, intervention and outcome (pp. 245–259).

  • Sperling, A. J., Lu, Z. L., & Manis, F. R. (2004). Slower implicit categorical learning in adult poor readers. Annals of Dyslexia, 54(2), 281–303.

    Article  Google Scholar 

  • Stein, J. (2001). The magnocellular theory of developmental dyslexia. Dyslexia, 7(1), 12–36.

    Article  Google Scholar 

  • Swan, D., & Goswami, U. (1997). Phonological awareness deficits in developmental dyslexia and the phonological representations hypothesis. Journal of Experimental Child Psychology, 66(1), 18–41.

    Article  Google Scholar 

  • van Zuijen, T. L., Simoens, V. L., Paavilainen, P., Näätänen, R., & Tervaniemi, M. (2006). Implicit, intuitive, and explicit knowledge of abstract regularities in a sound sequence: An event-related brain potential study. Journal of Cognitive Neuroscience, 18(8), 1292–1303.

    Article  Google Scholar 

  • Vicari, S., Marotta, L., Menghini, D., Molinari, M., & Petrosini, L. (2003). Implicit learning deficit in children with developmental dyslexia. Neuropsychologia, 41(1), 108–114.

    Article  Google Scholar 

  • Wechsler, D. (2005). Wechsler individual achievement test (2nd Ed (WIAT II) ed.). London: The Psychological Corp.

  • Wechsler, D., Kaplan, E., Fein, D., Kramer, J., Morris, R., Delis, D., & Maelender, A. (2003). Wechsler intelligence scale for children (4th ed (WISC-IV) [Assessment instrument] ed.). San Antonio: Pearson.

  • Willcutt, E. G., Sonuga-Barke, E. J., Nigg, J. T., & Sergeant, J. A. (2008). Recent developments in neuropsychological models of childhood psychiatric disorders. In T. Banaschewski & L. A. Rohde (Eds.), Biological child psychiatry (Vol. 24, pp. 195–226). Basel: Karger Publishers.

    Chapter  Google Scholar 

Download references

Funding

Research reported in this manuscript was supported by the National Institute on Deafness and Other Communication Disorders of the National Insitutes of Health under aware number R01DC012037. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Walk, A.M. & Conway, C.M. Atypical predictive processing during visual statistical learning in children with developmental dyslexia: an event-related potential study. Ann. of Dyslexia 68, 165–179 (2018). https://doi.org/10.1007/s11881-018-0161-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11881-018-0161-2

Keywords

Navigation