Skip to main content

Advertisement

Log in

Analysis and estimation of gaseous air pollutant emissions emitted into the atmosphere during Manavgat and Milas wildfire episodes using remote sensing data and ground measurements

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

In this study, the concentration levels of CO, NO2, CH2O, SO2, and O3 gases emitted during the two biggest wildfire episodes observed in Manavgat and Milas, Türkiye in 2021 were analyzed and spatio-temporal gas concentrations were estimated. Using the remote sensing imagery from Sentinel-5P satellite, a daily based time-series data analysis was performed over the Google Earth Engine platform (GEEp) and the gas emission levels (mol/m2) during the wildfires were obtained. The processed time-series data has been associated with the measurements from ground-stations of Türkiye National Air Quality Monitoring Network, allowing unit conversion to gas concentration unit in μg/m3. Based on predicted gas concentrations, statistical performance measurements were calculated with actual ground-station measurements. According to the spatio-temporal gas concentrations, the highest levels of CO gas emissions were detected on July 29th in Manavgat 5492.63 ± 325.12 μg/m3 and on August 5th in Milas 1071.14 ± 230.41 μg/m3. During the wildfire episodes NO2 concentration has reached to 383.52 ± 19.31 μg/m3 in Manavgat and 34.76 ± 8.20 μg/m3 in Milas. The O3 levels during the wildfires were estimated as 5.54 ± 16.09 μg/m3 in Manavgat and 41.22 ± 2.07 μg/m3 in Milas. The average SO2 concentration was 71.49 ± 4.2 μg/m3 in Manavgat and 165.35 ± 6.51 μg/m3 in Milas. Also, the average CH2O concentration was estimated as 12.83 ± 5.07 μg/m3 in Manavgat and 17.91 ± 4.41 μg/m3 in Milas. R2 values were between 0.67 and 0.84. Generally, IA values were higher than 0.70. The statistical results showed that our approach was reasonably successful in the prediction of the spatio-temporal wildfire gas emissions and can be applied to such scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available in the Google Earth Engine repository, Satellite image download link: https://code.earthengine.google.com/a33abc3d83cfea4f825b078f4cb77a70 Time-series analyses link: https://code.earthengine.google.com/b15d53dbd1f460ebbbbe6a939d84e7ce

References

  • Ahmadi M, Mirjalily SAA, Oloomi SAA (2020) Simulation of pollutant dispersion in urban street canyons using hybrid rans-les method with two-phase model. Comput Fluids 210:104676

    Article  MathSciNet  Google Scholar 

  • Akıncı HA, Akıncı H (2023) Machine learning based forest fire susceptibility assessment of Manavgat district (Antalya), Turkey. Earth Sci Inform 16(1):397–414

    Article  ADS  Google Scholar 

  • Alvarado LM, Richter A, Vrekoussis M, Hilboll A, Kalisz Hedegaard AB, Schneising O, Burrows JP (2020) Unexpected long-range transport of glyoxal and formaldehyde observed from the Copernicus Sentinel-5 Precursor satellite during the 2018 Canadian wildfires. Atmos Chem Phys 20(4):2057–2072

    Article  ADS  CAS  Google Scholar 

  • Andersen JH, Malmros P, Ebbehoej NE, Flachs EM, Bengtsen E, Bonde JP (2019) Systematic literature review on the effects of occupational safety and health (OSH) interventions at the workplace. Scand J Work Environ Health 45(2):103–113

    Article  PubMed  Google Scholar 

  • Andersson Ö, Börjesson P (2021) The greenhouse gas emissions of an electrified vehicle combined with renewable fuels: life cycle assessment and policy implications. Appl Energy 289:116621

    Article  CAS  Google Scholar 

  • Bell DM, Bradford JB, Lauenroth WK (2014) Forest stand structure, productivity, and age mediate climatic effects on aspen decline. Ecology 95(8):2040–2046

    Article  PubMed  Google Scholar 

  • Beyhan B, Koca F (2022) Ecological memory and socio-ecological resilience approach within the scope of Muğla wildfires. ICONARP International Journal of Architecture and Planning 10(1):325–348. https://doi.org/10.15320/ICONARP.2022.205

  • Billmire M, French NH, Loboda T, Owen RC, Tyner M (2014) Santa Ana winds and predictors of wildfire progression in southern California. Int J Wildland Fire 23(8):1119–1129

    Article  PubMed  PubMed Central  Google Scholar 

  • Bodah BW, Neckel A, Maculan LS, Milanes CB, Korcelski C, Ramírez O, ..., Oliveira ML (2022) Sentinel-5P TROPOMI satellite application for NO2 and CO studies aiming at environmental valuation. J Clean Product 357:131960

  • Briggs NL, Jaffe DA, Gao H, Hee JR, Baylon PM, Zhang Q et al (2016) Particulate matter, ozone, and nitrogen species in aged wildfire plumes observed at the Mount Bachelor Observatory. Aerosol Air Qual Res 16(12). https://doi.org/10.4209/aaqr.2016.03.0120

  • Ćalasan M, Aleem SHA, Zobaa AF (2020) On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: a novel exact analytical solution based on Lambert W function. Energy Convers Manage 210:112716

    Article  Google Scholar 

  • Chung PR, Tzeng CT, Ke MT, Lee CY (2013) Formaldehyde gas sensors: a review. Sensors 13(4):4468–4484

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Copat C, Cristaldi A, Fiore M, Grasso A, Zuccarello P, Santo Signorelli S et al (2020) The role of air pollution (PM and NO2) in COVID-19 spread and lethality: a systematic review. Environ Res 191:110129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costopoulou D, Vassiliadou I, Leondiadis L (2016) PCDDs, PCDFs and PCBs in farmed fish produced in Greece: levels and human population exposure assessment. Chemosphere 146:511–518

    Article  ADS  CAS  PubMed  Google Scholar 

  • Dobrowski SZ, Swanson AK, Abatzoglou JT, Holden ZA, Safford HD, Schwartz MK, Gavin DG (2015) Forest structure and species traits mediate projected recruitment declines in western US tree species. Glob Ecol Biogeogr 24(8):917–927

    Article  Google Scholar 

  • Donato DC, Fontaine JB, Campbell JL (2016) Burning the legacy? Influence of wildfire reburn on dead wood dynamics in a temperate conifer forest. Ecosphere 7(5):e01341

    Article  Google Scholar 

  • du Plessis H, Van Niekerk A (2014) A new GISc framework and competency set for curricula development at South African universities. S Afr J Geomatics 3(1):1–12

    Google Scholar 

  • Durán S, Reisen F, Rideout K (2014) Evidence review: wildfire smoke and public health risk. BC Centre for Disease Control, Vancouver

    Google Scholar 

  • Enright NJ, Fontaine JB, Bowman DM, Bradstock RA, Williams RJ (2015) Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front Ecol Environ 13(5):265–272

    Article  Google Scholar 

  • Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27

    Article  ADS  Google Scholar 

  • Grzybowski PT, Markowicz KM, Musiał JP (2023) Estimations of the ground-level NO2 concentrations based on the sentinel-5P NO2 tropospheric column number density product. Remote Sens 15(2):378

    Article  ADS  Google Scholar 

  • Guarnieri M, Balmes JR (2014) Outdoor air pollution and asthma. Lancet 383(9928):1581–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guérette EA, Paton-Walsh C, Desservettaz M, Smith TE, Volkova L, Weston CJ, Meyer CP (2018) Emissions of trace gases from Australian temperate forest fires: emission factors and dependence on modified combustion efficiency. Atmos Chem Phys 18(5):3717–3735

    Article  ADS  Google Scholar 

  • Gülçin D, Deniz B (2020) Remote sensing and GIS-based forest fire risk zone mapping: the case of Manisa, Turkey. Turk J For 21(1):15–24

    Article  Google Scholar 

  • Guo Q, Wu W (2023) Application of parameter optimization methods based on Kalman formula to the soil—crop system model. Int J Environ Res Public Health 20(5):4567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashim BM, Al-Naseri SK, Al-Maliki A, Al-Ansari N (2021) Impact of COVID-19 lockdown on NO2, O3, PM2. 5 and PM10 concentrations and assessing air quality changes in Baghdad, Iraq. Sci Total Environ 754:141978

    Article  ADS  CAS  PubMed  Google Scholar 

  • Hessburg PF, Prichard SJ, Hagmann RK, Povak NA, Lake FK (2021) Wildfire and climate change adaptation of western North American forests: a case for intentional management. Ecol Appl 31(8):e02432

    Article  PubMed  PubMed Central  Google Scholar 

  • Hilton JE, Miller C, Sullivan AL, Rucinski C (2015) Effects of spatial and temporal variation in environmental conditions on simulation of wildfire spread. Environ Model Softw 67:118–127

    Article  Google Scholar 

  • İban MC, Şahin E (2022) Monitoring burn severity and air pollutants in wildfire events using remote sensing data: the case of Mersin wildfires in summer 2021. Gumushane Univ J Sci 12(2):487–497

    Google Scholar 

  • Jaffe DA, O’Neill SM, Larkin NK, Holder AL, Peterson DL, Halofsky JE, Rappold AG (2020) Wildfire and prescribed burning impacts on air quality in the United States. J Air Waste Manag Assoc 70(6):583–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal S, Jalbert I, Schmid K, Tein N, Wang S, Golebiowski B (2022) Smoke and the eyes: a review of the harmful effects of wildfire smoke and air pollution on the ocular surface. Environ Pollut 119732. https://doi.org/10.1016/j.envpol.2022.119732

  • Kaman H, Yavaş M (2014) Evaluation of Antalya Province with regards to soil and water resources. Turk J Agric Nat Sci 1(Special Issue-2):1524–1527

    Google Scholar 

  • Kamarudin S, Obeid AAA, Tohir MZM (2020) fire risk and health impact assessment of a Malaysian landfill fire. PERINTIS eJournal 10(2):68–83

    Google Scholar 

  • Kannan R, Hirschberg S (2016) Interplay between electricity and transport sectors–Integrating the Swiss car fleet and electricity system. Transp Res A Policy Pract 94:514–531

    Article  Google Scholar 

  • Karunasingha DSK (2022) Root mean square error or mean absolute error? Use their ratio as well. Inf Sci 585:609–629

    Article  Google Scholar 

  • Khaniabadi YO, Daryanoosh SM, Amrane A, Polosa R, Hopke PK, Goudarzi G et al (2017) Impact of Middle Eastern Dust storms on human health. Atmos Pollut Res 8(4):606–613

    Article  Google Scholar 

  • Kilic S, Ozkan O (2019) A self-adaptive UAV routing for forest fire risk mitigation: a conceptual model. SummerSim-SCSC, Berlin, pp 1–12

  • Kloepfer KM, Lee WM, Pappas TE, Kang TJ, Vrtis RF, Evans MD et al (2014) Detection of pathogenic bacteria during rhinovirus infection is associated with increased respiratory symptoms and asthma exacerbations. J Allergy Clin Immunol 133(5):1301–1307

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar L, Mutanga O (2018) Google Earth Engine applications since inception: usage, trends, and potential. Remote Sens 10(10):1509

    Article  ADS  Google Scholar 

  • Kumar A, Bali K, Singh S, Naja M, Mishra AK (2019) Estimates of reactive trace gases (NMVOCs, CO and NOx) and their ozone forming potentials during forest fire over Southern Himalayan region. Atmos Res 227:41–51

    Article  CAS  Google Scholar 

  • Lecina‐Diaz J, Martínez‐Vilalta J, Alvarez A, Banqué M, Birkmann J, Feldmeyer D, ..., Retana J (2021) Characterizing forest vulnerability and risk to climate‐change hazards. Front Ecol Environ 19(2):126–133

  • Lim B, Zohren S (2021) Time-series forecasting with deep learning: a survey. Phil Trans R Soc A 379(2194):20200209

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  • Lin F, Wang Z, Zhang Z, He Y, Zhu Y et al (2020) Flue gas treatment with ozone oxidation: an overview on NOx, organic pollutants, and mercury. Chem Eng J 382:123030

    Article  CAS  Google Scholar 

  • Liu C, Shi K (2021) A review on methodology in O3-NOx-VOC sensitivity study. Environ Pollut 291:118249

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Mu Y, Chen K, Li Y, Guo J (2020) Daily activity feature selection in smart homes based on pearson correlation coefficient. Neural Process Lett 51:1771–1787

    Article  Google Scholar 

  • Lowther SD, Dimitroulopoulou S, Foxall K, Shrubsole C, Cheek E, Gadeberg B, Sepai O (2021) Low level carbon dioxide indoors—a pollution indicator or a pollutant? A health-based perspective. Environments 8(11):125

    Article  Google Scholar 

  • Ma Y, Yang S, Zhu Z, Wang G, Tigabu M, Guo Y et al (2022) Emissions of gaseous pollutants released by forest fire in relation to litter fuel moisture content. Atmos Environ 284:119215

    Article  CAS  Google Scholar 

  • Magro C, Nunes L, Gonçalves OC, Neng NR, Nogueira JM, Rego FC, Vieira P (2021) Atmospheric trends of CO and CH4 from extreme wildfires in Portugal using Sentinel-5P TROPOMI level-2 data. Fire 4(2):25

    Article  Google Scholar 

  • Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E (2020) Environmental and health ımpacts of air pollution: a review. Front Public Health 8:14. https://doi.org/10.3389/fpubh.2020.00014

  • Maurya NK, Pandey PC, Sarkar S, Kumar R, Srivastava PK (2022) Spatio-temporal monitoring of atmospheric pollutants using earth observation sentinel 5P TROPOMI data: impact of stubble burning a case study. ISPRS Int J Geo Inf 11(5):301

    Article  Google Scholar 

  • Mele M, Magazzino C (2021) Pollution, economic growth, and COVID-19 deaths in India: a machine learning evidence. Environ Sci Pollut Res 28:2669–2677

    Article  CAS  Google Scholar 

  • Metablue (2021a) Weather history for Manavgat, Antalya, Turkey. Retrieved from https://www.meteoblue.com/en/weather/historyclimate/weather-archive/. Accessed 11 June 2022

  • Metablue (2021b) Weather history for Milas, Muğla, Turkey. Retrieved from https://www.meteoblue.com/en/weather/historyclimate/weather-archive/. Accessed 11 June 2022

  • Mısır M, Mısır N (2021) Evaluation of forest fires in terms of climate change. Forest Fires 33:63–87

  • Naghdi R, Solgi A, Labelle ER, Zenner EK (2016) Influence of ground-based skidding on physical and chemical properties of forest soils and their effects on maple seedling growth. Eur J For Res 135:949–962

    Article  CAS  Google Scholar 

  • Ogen Y (2020) Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality. Sci Total Environ 726:138605

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacheco H, Díaz-López S, Jarre E, Pacheco H, Méndez W, Zamora-Ledezma E (2020) NO2 levels after the COVID-19 lockdown in Ecuador: a trade-off between environment and human health. Urban Clim 34:10067

  • Pallozzi E, Lusini I, Cherubini L, Hajiaghayeva RA, Ciccioli P, Calfapietra C (2018) Differences between a deciduous and a conifer tree species in gaseous and particulate emissions from biomass burning. Environ Pollut 234:457–467

    Article  CAS  PubMed  Google Scholar 

  • Pereira P, Bogunovic I, Zhao W, Barcelo D (2021) Short-term effect of wildfires and prescribed fires on ecosystem services. Curr Opin Environ Sci Health 22:100266

    Article  Google Scholar 

  • Ribeiro-Kumara C, Köster E, Aaltonen H, Köster K (2020) How do forest fires affect soil greenhouse gas emissions in upland boreal forests? A review. Environ Res 184:109328

    Article  CAS  PubMed  Google Scholar 

  • Robinson MA, Decker ZC, Barsanti KC, Coggon MM, Flocke FM, Franchin A et al (2021) Variability and time of day dependence of ozone photochemistry in western wildfire plumes. Environ Sci Technol 55(15):10280–10290

    Article  ADS  CAS  PubMed  Google Scholar 

  • Rozemeijer N, Adrichem D, Haffner D, Harel R, van Hoek M, Jaross G et al (2021) Input output data specification for the collection 4 L01b data processing of the Ozone Monitoring Instrument. AURA-OMI-KNMI-L01B-0005-SD 24148, Royal Netherlands Meteorological Institute (KNMI). https://docserver.gesdisc.eosdis.nasa.gov/public/project/OMI/AURA-OMI-KNMI-L01B-0005-SD-iods-v024148-20210702.pdf. Last access 10 June 2022

  • Salthammer T (2015) The formaldehyde dilemma. Int J Hyg Environ Health 218(4):433–436

    Article  CAS  PubMed  Google Scholar 

  • Sari NM, Kuncoro MNS (2021) Monitoring of CO, NO2 And SO2 levels during the covid-19 pandemic In Iran using remote sensing imagery. Geogr Environ Sustain 14(4):183–191

    Article  Google Scholar 

  • Savenets M (2021) Air pollution in Ukraine: a view from the Sentinel-5P satellite. Időjárás/Q J Hungarıan Meteorol Servıce 125(2):271–290

    Google Scholar 

  • Savenets M, Osadchyi V, Oreshchenko A, Pysarenko L (2020) Air quality changes in Ukraine during the April 2020 wildfire event. Geographica Pannonica 24(4):271–284

    Article  Google Scholar 

  • Schneider R, Vicedo-Cabrera A. M, Sera F, Masselot P, Stafoggia M, De Hoogh K et al (2021) Correction: Schneider et al. a satellite-based spatio-temporal machine learning model to reconstruct daily PM2. 5 concentrations across great Britain. Remote Sens. 2020, 12, 3803. Remote Sensing 13(18):3588

  • Sharifi A, Felegari S (2022) Nitrogen dioxide (NO2) pollution monitoring with sentinel-5P satellite imagery over during the coronavirus pandemic (case study: Tehran). Remote Sens Lett 13(10):1029–1039

    Article  Google Scholar 

  • Siddique SA, Sajid H, Gilani MA, Ahmed E, Arshad M, Mahmood T (2022) Sensing of SO3, SO2, H2S, NO2 and N2O toxic gases through aza-macrocycle via DFT calculations. Comput Theor Chem 1209:113606

    Article  CAS  Google Scholar 

  • Silva RA, West JJ, Lamarque JF, Shindell DT, Collins WJ, Faluvegi G et al (2017) Future global mortality from changes in air pollution attributable to climate change. Nat Clim Chang 7(9):647–651

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Slama A, Śliwczyński A, Woźnica J, Zdrolik M, Wiśnicki B, Kubajek J, ..., Franek E (2019) Impact of air pollution on hospital admissions with a focus on respiratory diseases: a time-series multi-city analysis. Environ Sci Pollut Res 26:16998–17009

  • Stockwell CE, Yokelson RJ, Kreidenweis SM, Robinson AL, DeMott PJ, Sullivan RC et al (2014) Trace gas emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other fuels: configuration and Fourier transform infrared (FTIR) component of the fourth Fire Lab at Missoula Experiment (FLAME-4). Atmos Chem Phys 14(18):9727–9754

    Article  ADS  Google Scholar 

  • Sullivan AL (2017) Inside the Inferno: fundamental Processes of wildland fire behaviour: Part 1: combustion chemistry and heat release. Curr For Rep 3:132–149

    Article  Google Scholar 

  • TUIK (2021) Turkish Statistical Institute. Agricultural data http://www.tuik.gov.tr. Access date: 22 March 2021

  • Van Der Velde IR, Van Der Werf GR, Houweling S, Eskes HJ, Veefkind JP, Borsdorff T, Aben I (2021) Biomass burning combustion efficiency observed from space using measurements of CO and NO2 by the TROPOspheric Monitoring Instrument (TROPOMI). Atmos Chem Phys 21(2):597–616

    Article  ADS  Google Scholar 

  • Vîrghileanu M, Săvulescu I, Mihai BA, Nistor C, Dobre R (2020) Nitrogen Dioxide (NO2) Pollution monitoring with Sentinel-5P satellite imagery over Europe during the coronavirus pandemic outbreak. Remote Sens 12(21):3575

    Article  ADS  Google Scholar 

  • Virta H, Ialongo I, Szeląg M, Eskes H (2023) Estimating surface-level nitrogen dioxide concentrations from Sentinel-5P/TROPOMI observations in Finland. Atmos Environ 312:119989. https://doi.org/10.1016/j.atmosenv.2023.119989

  • Vlassova L, Pérez-Cabello F, Mimbrero MR, Llovería RM, García-Martín A (2014) Analysis of the relationship between land surface temperature and wildfire severity in a series of Landsat images. Remote Sens 6(7):6136–6162

    Article  ADS  Google Scholar 

  • Volkova S, Coppersmith G, Van Durme B (2014) Inferring user political preferences from streaming communications. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Baltimore, pp 186–196

  • Wan N, Xiong X, Kluitenberg GJ, Hutchinson JM, Aiken R, Zhao H, Lin X (2023) Estimation of biomass burning emission of NO 2 and CO from 2019–2020 Australia fires based on satellite observations. Atmos Chem Phys 23(1):711–724

    Article  ADS  CAS  Google Scholar 

  • Wang L, Zeng Y, Chen T (2015) Back propagation neural network with adaptive differential evolution algorithm for time series forecasting. Expert Syst Appl 42(2):855–863

    Article  Google Scholar 

  • Wang H, Tian CW, Wang WM, Luo XM (2018) Time-series analysis of tuberculosis from 2005 to 2017 in China. Epidemiol Infect 146(8):935–939

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Lyu X, Deng X, Huang X, Jiang F, Ding A (2019) Aggravating O3 pollution due to NOx emission control in eastern China. Sci Total Environ 677:732–744

    Article  ADS  CAS  PubMed  Google Scholar 

  • Wang Y, Diao P, Kong L, Yu R, Zhang M, Zuo T et al (2020) Ethylene enhances seed germination and seedling growth under salinity by reducing oxidative stress and promoting chlorophyll content via ETR2 pathway. Front Plant Sci 11:1066

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber JN, Kaufholdt D, Minner-Meinen R, Bloem E, Shahid A, Rennenberg H, Hänsch R (2021) Impact of wildfires on SO2 detoxification mechanisms in leaves of oak and beech trees. Environ Pollut 272:116389

    Article  CAS  PubMed  Google Scholar 

  • WHO (World Health Organization) (2022) Ambient (outdoor) air pollution. URL address: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health. Date of access 20 April 2022

  • Xu R, Yu P, Abramson MJ, Johnston FH, Samet JM, Bell ML., ..., Guo Y (2020) Wildfires, global climate change, and human health. N Engl J Med 383(22):2173–2181

  • Yilmaz OS, Acar U, Sanli FB et al (2023) Mapping burn severity and monitoring CO content in Türkiye’s 2021 Wildfires, using Sentinel-2 and Sentinel-5P satellite data on the GEE platform. Earth Sci Inform 16:221–240. https://doi.org/10.1007/s12145-023-00933-9

  • Ying L, Cheng H, Shen Z, Guan P, Luo C, Peng X (2021) Relative humidity and agricultural activities dominate wildfire ignitions in Yunnan, Southwest China: patterns, thresholds, and implications. Agric For Meteorol 307:108540

    Article  Google Scholar 

  • Zhang H, Wang T, Zhang Y, Wang J, Sun B, Pan WP (2020) A review on adsorbent/catalyst application for mercury removal in flue gas: effect of sulphur oxides (SO2, SO3). J Clean Prod 276:124220

    Article  CAS  Google Scholar 

  • Zhao Y, Mo X, Wang H, Li J, Gong D, Wang D, ..., Wang B (2023) A comparative study of ground-gridded and satellite-derived formaldehyde during ozone episodes in the Chinese Greater Bay Area. Remote Sens 15(16):3998

  • Zheng Z, Yang Z, Wu Z, Marinello F (2019) Spatial variation of NO2 and its impact factors in China: an application of sentinel-5P products. Remote Sens 11(16):1939

    Article  ADS  Google Scholar 

  • Zoran MA, Savastru RS, Savastru DM, Tautan MN (2020) Assessing the relationship between surface levels of PM2. 5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. Sci Total Environ 738:139825

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

There is no funding available for the research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Tunahan Çınar, Fatih Taşpınar and Abdurrahim Aydın. The first draft of the manuscript was written by Tunahan Çınar and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tunahan Çinar.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent to participate

All authors have given their Consent to Participate.

Consent to publish

All authors have given their Consent to Publish.

Competing interests

In this study, there are no conflicts of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çinar, T., Taşpinar, F. & Aydin, A. Analysis and estimation of gaseous air pollutant emissions emitted into the atmosphere during Manavgat and Milas wildfire episodes using remote sensing data and ground measurements. Air Qual Atmos Health 17, 559–579 (2024). https://doi.org/10.1007/s11869-023-01463-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-023-01463-5

Keywords

Navigation