Skip to main content

Advertisement

Log in

Highly size-resolved characterization of water-soluble inorganic ions in submicron atmospheric particles

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Up to date, few attentions have been given to the special characterization of water-soluble inorganic ions (WSIs) in the submicron atmospheric particles. In this study, to implement a highly size-resolved characterization of WSIs in the submicron atmospheric particles, ten sets of size-segregated submicron atmospheric particles were collected in Hangzhou (China) from November to December 2015, with cut-off diameters of 0.060, 0.108, 0.170, 0.260, 0.400, 0.650, and 1.000 μm. The particulate WSIs, including Cl, NO3, SO42−, Na+, NH4+, K+, and Ca2+ were analyzed by ion chromatography, and their mode distributions and potential sources were assessed. It was found that the particulate WSIs constituted a substantial part (40.4~70.9%) in each fraction of submicron particles, of which the secondary inorganic ions (SO42−, NO3, and NH4+) were the dominant species. The sulfur oxidation rate (SOR) and nitrogen oxidation rate (NOR) were increased when the submicron particles became coarser, indicating the enhanced secondary formation processes of SO42− and NO3 in the coarser submicron particles, thus resulting in the higher fractional contribution of secondary inorganic aerosols in the coarser submicron atmospheric particles. The correlation coefficients between K+ and Cl, NO3, and SO42− were 0.9293 (P = 0.002), 0.9702 (P < 0.001), and 0.9723 (P < 0.001), suggesting their dominant contribution from the biomass burning. Furthermore, it was found that PM0.4–1 (aerodynamic diameter of 0.400–1.000 μm) was a substantial part (66.6%) of submicron atmospheric particles. Compared to PM0.4 (aerodynamic diameter ≤ 0.400 μm), the concentration of WSIs in PM0.4–1 was prominently higher, and the secondary formation processes of SO42− and NO3 in PM0.4–1 were significantly enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinyuan Chen or Xiuzhen Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Wang, J., Yan, W. et al. Highly size-resolved characterization of water-soluble inorganic ions in submicron atmospheric particles. Air Qual Atmos Health 12, 683–692 (2019). https://doi.org/10.1007/s11869-019-00687-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-019-00687-8

Keywords

Navigation