Skip to main content

Advertisement

Log in

Assessment of ambient mercury deposition fluxes by numerical air quality modeling

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Since mercury monitoring activities are very limited in Japan and governmental monitoring data of mercury deposition fluxes are not available, it is necessary to choose some numerical models to protect and manage the local ambient air quality. Numerical models for mercury transportation and deposition should be developed to understand the scenario and pathway of atmospheric mercury concentration distributions and deposition fluxes in the local area of Japan. The ground-level mercury concentrations have to meet the environmental standards set by the Ministry of the Environment in Japan which is less than 40 mg m−3. The aim and scope of this research is to apply numerical models to forecast seasonal variation of ambient mercury concentrations and deposition fluxes in the local area of Japan. To estimate the ambient mercury concentrations in the local area, a dispersion model has been used, the National Institute of Advanced Science and Technology-Atmospheric Dispersion Model for Exposure and Risk Assessment (AIST-ADMER). The AIST-ADMER model calculated the yearly average concentration distributions of mercury in the Aichi Prefecture Japan, which serve as boundary and background concentrations of mercury for the mercury deposition model. Finally, the boundary and background concentrations of mercury calculated by the AIST-ADMER along with meteorological data were superposed in the mercury deposition model to calculate mercury deposition fluxes (dry and wet) in Isshiki Town of Aichi Prefecture. Maximum atmospheric concentrations of mercury were calculated as 2.89 ng m−3 by the AIST-ADMER model. In this study, total dry deposition fluxes and wet deposition fluxes were calculated to be 15.1 μg m−2 year−1 and 14.3 μg g m−2 year−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • AMAP (Arctic Monitoring and Assessment Program), UNEP (United Nations Environment Program) (2008) Technical background report to the global atmospheric mercury assessment. Available from: http://www.chem.unep.ch/mercury/Atmospheric_Emissions/Technical_background_report.pdf (Accessed 1 Mar 2009).

  • Ariya PA, Khalizov A, Gidas A (2002) Reactions of gaseous mercury with atomic and molecular halogens: kinetics, product studies, and atmospheric implications. J Phys Chem 106:7310–7320

    Article  CAS  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (1999) Public Health Statement of mercury CAS#: 7439-97-6, US Department of Health and Human Services, Public Health Service

  • Brandon NP, Francis PA, Jeffrey J, Kelsall GH, Yin Q (2001) Thermodynamics and electrochemical behaviour of Hg-S-Cl-H2O systems. J Electroanaly Chem 497:18–32

    Article  CAS  Google Scholar 

  • Cohen M, Richard A, Roland D, Paul M, Laurier P, David N, Dominique R, Marc D, Roch D, Rachelle L, Jennifer S, Todd N, John M (2004) Modeling the atmospheric transport and deposition of mercury to the great lakes. Environ Rese 95:247–265

    Article  CAS  Google Scholar 

  • Clarke JF, Edgerton ES, Martin BE (1997) Dry deposition calculations for the Clean Air Status and Trends Network. Atmos Environ 31:3667–3678

    Article  CAS  Google Scholar 

  • Clever HL, Johnson SA, Derrick ME (1985) The solubility of mercury and some sparingly soluble mercury salts in water and aqueous electrolyte solution. J Phys chem 14(3):631–680

    CAS  Google Scholar 

  • Dickerson RR (2010) Online courses. Department of Atmospheric and Ocean Science, the Uni Maryland. Available from: http://www.atmos.umd.edu/~russ/. Accessed 1 Jun 2010

  • Erisman JW (1992) Atmospheric deposition of acidifying compounds in the Netherlands. PhD thesis, Uni Utrecht, Utrecht, the Netherlands

  • Fitzgerald WF, Engstrom DR, Mason RP, Nater EA (1998) The case for atmospheric mercury contamination in remote areas. Environ Sci Technol 32:1–7

    Article  CAS  Google Scholar 

  • Fowler D (1984) Transfer to terrestrial surfaces. Phil Trans R Soc 305(B):28197

    Google Scholar 

  • Fowler D, Cape JN, Unsworth MH (1989) Deposition of atmospheric pollutants on forests. Phil Trans R Soc 324:247–265

    Article  Google Scholar 

  • Garland JA (1978) Dry and wet removal of sulphur from the atmosphere. Atmos Environ 12:349–362

    Google Scholar 

  • Garrat JR, Hicks BB (1973) Momentum, heat and water vapour transfer to and from natural and artificial surfaces. Q J Roy Meteor Soc 99:680–687

    Google Scholar 

  • Hall B (1995) The gas-phase oxidation of elemental mercury by ozone. Water Air Soil Pollut 80:301–315

    Article  CAS  Google Scholar 

  • Hanson PJ, Lindberg SE, Tabberrer TA, Owens JG, Kim KH (1995) Foliar exchange of mercury vapor: evidence for a compensation point. Water Air Soil Pollut 80:373–382

    Google Scholar 

  • Hicks BB, Baldocchi DD, Hosker RP, Hutchison BA, Matt DR, McMillen RT, Satterfield LC (1985) On the use of monitored air concentrations to infer dry deposition. NOAA Technical Memorandum ERL ARL-141, Ntl Oceanic Atmos Administr, Silver Spring, Maryland

  • Hicks BB, Baldocchi DD, Meyers TP, Hosker RP, Matt DR (1987) A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water Air Soil Pollut 36:311–330

    Article  CAS  Google Scholar 

  • Hicks BB, Matt DR, McMillen RT, Womack JD, Wesely ML, Hart RL, Cook DR, Lindberg SE, De Pena RG, Thomson DW (1989) A field investigation of sulfate fluxes to a deciduous forest. J Geophys Res 94(D10):13003–13011

    Article  CAS  Google Scholar 

  • Higashino H, Inoue K, Mita K, Shinozaki H, Yoshikado H (2004) Atmospheric Dispersion Model for Exposure and Risk assessment (AIST-ADMER) development and verification of nationwide version. Environ Manage 40 (12):1242–1250 (in Japanese). The detail description of the AIST-ADMER model and source code can be downloaded from the AIST-ADMER website: http://www.aist-riss.jp/software/admer/en/index_e.html Accessed 6 Jun 2005

    Google Scholar 

  • Higashino H, Kitabayashi K, Inoue K, Mita K, Yonezawa Y (2003) Development of an Atmospheric Dispersion Model for Exposure and Risk Assessment (AIST-ADMER). Jp Soc Atmos Environ 38(2):100–115 (in Japanese)

    CAS  Google Scholar 

  • Ito S, Yokoyama T, Asakura K (2006) Emissions of mercury and other trace elements from coal-fired power plants in Japan. Sin Total Environ 368:397–402

    Article  CAS  Google Scholar 

  • Iverfeldt A (1991) Mercury in canopy through fall water and its relation to atmospheric deposition. Water Air Soil Pollut 56:553–564

    Article  CAS  Google Scholar 

  • JCOAL (Japan Coal Energy Center) (2005) A report of Clean Coal Technology (CCT) in Japan. Available from: http://www.brain-c-jcoal.info/cctinjapan-files/english/cct_english.pdf Accessed 7 Jan 2007

  • Kida A, Sakai S, Takaoka M, Hirai Y, Moritomi M, Yasuda K (2007) Study on air emission inventory of mercury including waste management processes and emission reduction measures. Available from: http://www.chem.unep.ch/mercury/Call_for_information/Japan-submission.pdf Accessed 9 Aug 2011

  • Landis MS (1998) Assessing the atmospheric deposition of mercury to Lake Michigan: the importance of the Chicago/Gary urban area on wet and dry deposition. Ph.D, Dissertation, Uni Mich

    Google Scholar 

  • Landis MS, Keeler GJ (2002) Atmospheric mercury deposition to the Lake Michigan during the Lake Michigan mass balance study. Environ Sci Technol 36:4518–4524

    Article  CAS  Google Scholar 

  • Lee DS, Nemitz E, Fowler D, Kingdon RD (2001) Modeling atmospheric mercury transport and deposition across Europe and the UK. Atmos Environ 35:5455–66

    Article  CAS  Google Scholar 

  • Lee FF (2007) Comprehensive analysis, Henry’s law constant determination, and photocatalytic degradation of polychlorinated biphenyls (PCBs) and/or other persistent organic pollutants (POPs), Ph.D. dissertation, State University of New York at Albany, pp. 199–201

  • Lin C, Pehkonen SO (1999) The chemistry of atmospheric mercury: a review. Atmos Environ 33:2067–2079

    Article  CAS  Google Scholar 

  • Lin C-J, Pruek P, Steve E, Lindberg SE, Simo O, Pehkonen SO, Daewon B, Carey J (2006) Scientific uncertainties in atmospheric mercury models I: model science evaluation. Atmos Environ 40:2911–2928

    Article  CAS  Google Scholar 

  • Lindberg SE, Stratton WJ (1998) Atmospheric mercury speciation: concentrations and behavior of reactive gaseous mercury in ambient air. Environ Sci Technol 32:49–57

    Article  CAS  Google Scholar 

  • Lindberg SE, Turner RR, Meyers TP, Tylor GE, Schroeder WH (1991) Atmospheric concentration and deposition of Hg to a deciduous forest at Walker Branch Watershed, Tennessee, USA. Water Air Soil Pollut 56:577–94

    Article  CAS  Google Scholar 

  • Lindqvist O, Rodhe H (1985) Atmospheric mercury: an overview. Tellus Series B, Chem Phys Meteorol 37B:136–159

    Article  CAS  Google Scholar 

  • MOE (Ministry of the Environment Japan) (1998–2009) The results of hazardous air pollutants monitoring survey result. Available from: http://www.env.go.jp/air/osen/monitoring/index.html Accessed 14 Mar 2011

  • Moritomi H (2008) Mercury Emission from Coal Combustion in Japan. Presentation in the Confer Transboundary Air Pollut North East Asia, Tokyo, Japan. Available from: http://www.neaspec.org/documents/airpollution/PDF/S1_17am_Moritomi(GifuUniv)_1211.pdf Accessed 8 Jun 2009

  • Never N (1995) Air pollution control engineering. McGraw-HILL, Singapore, pp 1–52

    Google Scholar 

  • Pai P, Karamchandani P, Seigneur C (1997) Simulation of the regional atmospheric transport and fate of mercury using a comprehensive Eulerian model. Atmos Environ 31:2717–32

    Article  CAS  Google Scholar 

  • Peterson EW, Hennessey JP (1978) On the use of power laws for estimates of wind power potential. J Appl Meteorol 17:390–394

    Article  Google Scholar 

  • Petersen G, Bloxam R, Wong S, Munthe J, Kruger O, Schmolke SR, Kumar AV (2001) A comprehensive eulerian modeling framework for airborne mercury species: model development and applications in Europe. Atmos Environ 35:3063–3074

    Article  CAS  Google Scholar 

  • Sakata M, Marumoto K (2004) Dry deposition fluxes and deposition velocities of trace metals in the Tokyo metropolitan area measured with a water surface sampler. Environ Sci Technol 38(7):2190–2197

    Article  CAS  Google Scholar 

  • Sakata M, Marumoto K (2005) Wet and dry deposition fluxes of mercury in Japan. Atmos Environ 39:3139–3146

    Article  CAS  Google Scholar 

  • Sanemasa I (1975) The solubility of elemental mercury vapor in water. Bulletin Chem Soc Jp 48:1795–1798

    Article  CAS  Google Scholar 

  • Schroeder W, Munthe J (1998) Atmospheric mercury—an overview. Atmos Environ 32:809–22

    Article  CAS  Google Scholar 

  • Schroeder WH, Yarwood G, Niki H (1991) Transformation processes involving mercury species in the atmosphere results from a literature survey. Water Air Soil Pollut 56:653–666

    Article  CAS  Google Scholar 

  • Seigneur C, Karamchandani P, Lohman K, Vijayaraghavan K, Shia RL (2001) Multiscale modeling of the atmospheric fate and transport of mercury. J Geophys Res 106(27):795–809

    Google Scholar 

  • Seigneur C, Vijayaraghavan K, Lohman K, Karamchandani P, Scott C (2004) Global source attribution for mercury deposition in the United States. Environ Sci Technol 38:555–569

    Article  CAS  Google Scholar 

  • Seinfeld JH (1986) Atmospheric chemistry and physics of air pollution. John Wiley Sons, New York

    Google Scholar 

  • Shia RL, Seigneur C, Pai P, Ko M, Sze ND (1999) Global simulation of atmospheric mercury concentrations and deposition fluxes. J Geophys Res 104(23):747–760

    Google Scholar 

  • Sillen LG, Martell AE (1964) Stability Constants of Metal-Ion Complexes. The Chem. Soc. (London), 2nd edition, Special Pub. No. 17

  • Slemr F, Schuster G, Seiler W (1985) Distribution, speciation, and budget of atmospheric mercury. J Atmos Chem 3:407–434

    Article  CAS  Google Scholar 

  • Sommar J, Garfeldt K, Stromberg D, Feng X (2001) A kinetic study of the gas-phase reaction between the hydroxyl radical and atomic mercury. Atmos Environ 35:3049–3054

    Article  CAS  Google Scholar 

  • Sommar J, Hallquist M, Ljungstrom E, Lindqvist O (1997) On the gas phase reactions between volatile biogenic mercury species and the nitrate radical. J Atmos Chem 27(3):233–247

    Article  CAS  Google Scholar 

  • Strode SA, Jaegle L, Selin NE, Jacob DJ, Park RJ, Yantosca RM, Mason RP, Slemr F (2007) Air-sea exchange in the global mercury cycle. Global Biogeochem Cycles 21, GB1017. doi:10.1029/2006GB002766

    Article  Google Scholar 

  • Suzuki N (2008) Distribution, trend and monitoring projects for fate of monitoring projects for fate of mercury species in Japan. Int Works Reg and IntTransp Air Pollut, Hanoi, Vietnam. Available from: http://www.htap.org/meetings/2008/2008_10/HTAP%20Hanoi%20Presentations/Mercury/Suzuki.pdf Accessed 3 May 2009

  • Takahashi F, Yamagata M, Yasuda K, Kida A (2008) Impact of mercury emissions from incineration of automobile shredder residue in Japan. Applied Geochem 23:584–593

    Article  CAS  Google Scholar 

  • Thom AS (1975) Momentum, mass and heat exchange of plant communities. In: Monteith JL (ed) Vegetation and the atmosphere - 1. Academic Press, New York

  • Tokos JJS, Hall B, Calhoun JA, Prestbo EM (1998) Homogeneous gas-phase reaction of Hg0 with H2O2, O3, CH3I, and (CH3)2S: implications for atmospheric Hg cycling. Atmos Environ 32:823–827

    Article  CAS  Google Scholar 

  • UNECE (United Nations Economic Commission for Europe) (2010) Hemispheric transport of air pollution. Air Pollution Studies No.18. Available from: http://www.unece.org/fileadmin/DAM/env/lrtap/Publications/11-22145-Part-B.pdf Accessed 2 June 2011

  • USEPA (1996) Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry. Method 1631. EPA 821-R-96-012, U.S. Environ Protec Agen, Washington, D.C. Available from: http://water.epa.gov/scitech/methods/cwa/metals/mercury/upload/2007_07_10_methods_method_mercury_1631.pdf Accessed 19 Aug 2002

  • Van Loon L, Mader E, Scott SL (2000) Reduction of the aqueous mercuric ion by sulfite: UV spectrum of HgSO3 and its intramolecular redox reactions. J Phys Chem 104:1621–1626

    Article  Google Scholar 

  • Walmsley JL, Wesley ML (1996) Modification of coded parameterizations of surface resistances to gaseous dry deposition. Atmos Environ 30:1181–1188

    Article  CAS  Google Scholar 

  • Wesely ML (1989) Parametrization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos Environ 23:1293–1304

    Article  CAS  Google Scholar 

  • Wesely ML, Hicks BB (1977) Some factors that affect the deposition rates of sulphur dioxide and similar gases on vegetation. J Air Pollut Ctrl Assn 27(11):1110–1116

    Article  CAS  Google Scholar 

  • Wiener JG, Krabbenhoft DP, Heinz GH, Scheuhammer AM (2003) Ecotoxicology of mercury. In: Hoffman DJ, Rattner BA, Burton GA Jr, Cairns J Jr (eds) Handbook of Ecotoxicology, vol 2. CRC, Boca Raton, pp 409–463

    Google Scholar 

  • Wilke CR, Chang P (1995) Correlation of diffusion coefficients in dilute solutions. Aiche J 1(2):264–2670

    Article  Google Scholar 

  • Zhang L, Moran MD, Makar PA, Brook JR, Gong S (2002) Modeling gaseous dry deposition in AURAMS: a unified regional air-quality modeling system. Atmos Environ 36:537–60

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Al Razi Khandakar Md.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khandakar Md, H.A.R., Moritomi, H. Assessment of ambient mercury deposition fluxes by numerical air quality modeling. Air Qual Atmos Health 6, 629–640 (2013). https://doi.org/10.1007/s11869-013-0202-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-013-0202-2

Keywords

Navigation