Skip to main content

Advertisement

Log in

Current Approaches of Immune Checkpoint Therapy in Chronic Lymphocytic Leukemia

  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Increasing understanding of the complex interaction between leukemic and immune cells, which is responsible for tumor progression and immune evasion, has paved the way for the development of novel immunotherapy approaches in chronic lymphocytic leukemia (CLL). One of the well-known immune escape mechanisms of tumor cells is the up-regulation of immune checkpoint molecules. In recent years, targeting immune checkpoint receptors is the most clinically effective immunotherapeutic strategy for cancer treatment. In this regard, various immune checkpoint blockade (ICB) drugs are currently been investigating for their potential effects on improving anti-tumor immune response and clinical efficacy in the hematological malignancies; however, their effectiveness in patients with CLL has shown less remarkable success, and ongoing research is focused on identifying strategies to enhance the efficacy of ICB in CLL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mollstedt J, Mansouri L, Rosenquist R. Precision diagnostics in chronic lymphocytic leukemia: past, present and future. Front Oncol. 2023;13:1146486.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Shadman M. Diagnosis and treatment of chronic lymphocytic leukemia: a review. JAMA. 2023;329(11):918–32.

    Article  PubMed  CAS  Google Scholar 

  3. Karr M, Roeker L. A history of targeted therapy development and progress in novel–novel combinations for chronic lymphocytic leukemia (CLL). Cancers. 2023;15(4):1018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Asgarian-Omran H, Forghani P, Hojjat-Farsangi M, Roohi A, Sharifian RA, Razavi SM, et al. Expression profile of galectin-1 and galectin-3 molecules in different subtypes of chronic lymphocytic leukemia. Cancer Invest. 2010;28(7):717–25.

    Article  PubMed  CAS  Google Scholar 

  5. Sun C, Chen Y-C, Martinez Zurita A, Baptista MJ, Pittaluga S, Liu D, et al. The immune microenvironment shapes transcriptional and genetic heterogeneity in chronic lymphocytic leukemia. Blood Adv. 2023;7(1):145–58.

    Article  PubMed  CAS  Google Scholar 

  6. Palma M, Gentilcore G, Heimersson K, Mozaffari F, Näsman-Glaser B, Young E, et al. T cells in chronic lymphocytic leukemia display dysregulated expression of immune checkpoints and activation markers. Haematologica. 2017;102(3):562.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Roessner PM, Seiffert M. T-cells in chronic lymphocytic leukemia: guardians or drivers of disease? Leukemia. 2020;34(8):2012–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Cutucache CE. Tumor-induced host immunosuppression: special focus on CLL. Int Immunopharmacol. 2013;17(1):35–41.

    Article  PubMed  CAS  Google Scholar 

  9. Ding W, LaPlant BR, Call TG, Parikh SA, Leis JF, He R, et al. Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood, J Am Soc Hematol. 2017;129(26):3419–27.

    CAS  Google Scholar 

  10. Ntsethe A, Dludla PV, Nyambuya TM, Ngcobo SR, Nkambule BB. The impact of immune checkpoint inhibitors in patients with chronic lymphocytic leukemia (CLL): a protocol for a systematic review and meta-analysis of randomized controlled trials. Medicine. 2020;99(28):e21167. https://doi.org/10.1097/MD.0000000000021167.

  11. Arruga F, Gyau BB, Iannello A, Vitale N, Vaisitti T, Deaglio S. Immune response dysfunction in chronic lymphocytic leukemia: dissecting molecular mechanisms and microenvironmental conditions. Int J Mol Sci. 2020;21(5):1825.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Nirschl CJ, Drake CG. Molecular pathways: coexpression of immune checkpoint molecules: signaling pathways and implications for cancer immunotherapy. Clin Cancer Res. 2013;19(18):4917–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Weber R, Fleming V, Hu X, Nagibin V, Groth C, Altevogt P, Utikal J, Umansky V. Myeloid-Derived Suppressor Cells Hinder the Anti-Cancer Activity of Immune Checkpoint Inhibitors. Front Immunol. 2018;9:1310. https://doi.org/10.3389/fimmu.2018.01310.

  14. Nicholas NS, Apollonio B, Ramsay AG. Tumor microenvironment (TME)-driven immune suppression in B cell malignancy. Biochimica et Biophysica Acta -Molecular Cell Research. 2016;1863(3):471–82.

    Article  CAS  Google Scholar 

  15. Pianko MJ, Liu Y, Bagchi S, Lesokhin AM. Immune checkpoint blockade for hematologic malignancies: a review. Stem Cell Investig. 2017;4:32. https://doi.org/10.21037/sci.2017.03.04.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Peranzoni E, Ingangi V, Masetto E, Pinton L, Marigo I. Myeloid Cells as Clinical Biomarkers for Immune Checkpoint Blockade. Front Immunol. 2020;11:1590. https://doi.org/10.3389/fimmu.2020.01590.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Twomey JD, Zhang B. Cancer immunotherapy update: FDA-approved checkpoint inhibitors and companion diagnostics. AAPS J. 2021;23(2):1–11.

    Article  Google Scholar 

  18. Zhang H, Houghton AM. Therapeutics Good cops turn bad: the contribution of neutrophils to immune-checkpoint inhibitor treatment failures in cancer. Pharmacology. 2021;217:107662.

    CAS  Google Scholar 

  19. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375(9):819–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. O’Donnell JS, Long GV, Scolyer RA, Teng MW, Smyth MJ. Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat Rev. 2017;52:71–81.

    Article  PubMed  Google Scholar 

  21. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–9.

    Article  PubMed  Google Scholar 

  22. Svanberg R, Janum S, Patten PE, Ramsay AG, Niemann CU. Targeting the tumor microenvironment in chronic lymphocytic leukemia. Haematologica. 2021;106(9):2312.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ramsay AG, Clear AJ, Fatah R, Gribben JG. Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer. Blood, J Ame Soc Hematol. 2012;120(7):1412–21.

    CAS  Google Scholar 

  24. Riches JC, Davies JK, McClanahan F, Fatah R, Iqbal S, Agrawal S, et al. T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood, J Am Soc Hematol. 2013;121(9):1612–21.

    CAS  Google Scholar 

  25. McClanahan F, Hanna B, Miller S, Clear AJ, Lichter P, Gribben JG, et al. PD-L1 checkpoint blockade prevents immune dysfunction and leukemia development in a mouse model of chronic lymphocytic leukemia. Blood, J Am Soc Hematol. 2015;126(2):203–11.

    CAS  Google Scholar 

  26. Khan M, Arooj S, Wang H. NK cell-based immune checkpoint inhibition. Front Immunol. 2020;11:167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Rudd CE, Taylor A, Schneider H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev. 2009;229(1):12–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Atanackovic D, Luetkens T. Biomarkers for checkpoint inhibition in hematologic malignancies. Semin Cancer Biol. 2018;52(Pt 2):198–206. https://doi.org/10.1016/j.semcancer.2018.05.005.

    Article  PubMed  CAS  Google Scholar 

  29. Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti–CTLA-4 antibodies. J Exp Med. 2009;206(8):1717–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. clinicaltrials.gov [Available from: https://clinicaltrials.gov/.

  31. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Comin-Anduix B, Escuin-Ordinas H, Ibarrondo FJ. Tremelimumab: research and clinical development. Onco Targets Ther. 2016;9:1767.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Frydecka I, Kosmaczewska A, Bocko D, Ciszak L, Wolowiec D, Kuliczkowski K, et al. Alterations of the expression of T-cell-related costimulatory CD28 and downregulatory CD152 (CTLA-4) molecules in patients with B-cell chronic lymphocytic leukaemia. Br J Cancer. 2004;90(10):2042–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Motta M, Rassenti L, Shelvin B, Lerner S, Kipps T, Keating M, et al. Increased expression of CD152 (CTLA-4) by normal T lymphocytes in untreated patients with B-cell chronic lymphocytic leukemia. Leukemia. 2005;19(10):1788–93.

    Article  PubMed  CAS  Google Scholar 

  35. Kosmaczewska A, Ciszak L, Suwalska K, Wolowiec D, Frydecka I. CTLA-4 overexpression in CD19+/CD5+ cells correlates with the level of cell cycle regulators and disease progression in B-CLL patients. Leukemia. 2005;19(2):301–4.

    Article  PubMed  CAS  Google Scholar 

  36. Ciszak L, Frydecka I, Wolowiec D, Szteblich A, Kosmaczewska A. Patients with chronic lymphocytic leukaemia (CLL) differ in the pattern of CTLA-4 expression on CLL cells: the possible implications for immunotherapy with CTLA-4 blocking antibody. Tumor Biol. 2016;37(3):4143–57.

    Article  CAS  Google Scholar 

  37. Joshi AD, Hegde GV, Dickinson JD, Mittal AK, Lynch JC, Eudy JD, et al. ATM, CTLA4, MNDA, and HEM1 in high versus low CD38–expressing B-cell chronic lymphocytic leukemia. Clin Cancer Res. 2007;13(18):5295–304.

    Article  PubMed  CAS  Google Scholar 

  38. Mittal AK, Chaturvedi NK, Rohlfsen RA, Gupta P, Joshi AD, Hegde GV, et al. Role of CTLA4 in the proliferation and survival of chronic lymphocytic leukemia. PLoS ONE. 2013;8(8):e70352.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. O’Mahony D, Morris JC, Quinn C, Gao W, Wilson WH, Gause B, et al. A pilot study of CTLA-4 blockade after cancer vaccine failure in patients with advanced malignancy. Clin Cancer Res. 2007;13(3):958–64.

    Article  PubMed  Google Scholar 

  40. Ansell SM, Hurvitz SA, Koenig PA, LaPlant BR, Kabat BF, Fernando D, et al. Phase I study of ipilimumab, an anti–CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non–Hodgkin lymphoma. Clin Cancer Res. 2009;15(20):6446–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Bashey A, Medina B, Corringham S, Pasek M, Carrier E, Vrooman L, et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood, J Am Soc Hematol. 2009;113(7):1581–8.

    CAS  Google Scholar 

  42. Davids MS, Kim HT, Bachireddy P, Costello C, Liguori R, Savell A, et al. Ipilimumab for patients with relapse after allogeneic transplantation. N Engl J Med. 2016;375:143–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Munari E, Mariotti FR, Quatrini L, Bertoglio P, Tumino N, Vacca P, et al. PD-1/PD-L1 in cancer: pathophysiological, diagnostic and therapeutic aspects. Int J Mol Sci. 2021;22(10):5123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, et al. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med. 2014;211(5):781–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors in cancer therapy: a focus on T-regulatory cells. Immunol Cell Biol. 2018;96(1):21–33.

    Article  PubMed  CAS  Google Scholar 

  46. Hou A, Hou K, Huang Q, Lei Y, Chen W. Targeting myeloid-derived suppressor cell, a promising strategy to overcome resistance to immune checkpoint inhibitors. Front Immunol. 2020;11:783.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Taghiloo S, Asgarian-Omran H. Immune evasion mechanisms in acute myeloid leukemia: a focus on immune checkpoint pathways. Crit Rev Oncol Hematol. 2021;157:103164.

    Article  PubMed  Google Scholar 

  48. Allahmoradi E, Taghiloo S, Tehrani M, Hossein-Nattaj H, Janbabaei G, Shekarriz R, et al. CD4+ T cells are exhausted and show functional defects in chronic lymphocytic leukemia. Iran J Immunol. 2017;14(4):257–69.

    PubMed  Google Scholar 

  49. Taghiloo S, Allahmoradi E, Tehrani M, Hossein-Nataj H, Shekarriz R, Janbabaei G, et al. Frequency and functional characterization of exhausted CD 8+ T cells in chronic lymphocytic leukemia. Eur J Haematol. 2017;98(6):622–31.

    Article  PubMed  CAS  Google Scholar 

  50. Taghiloo S, Allahmoradi E, Ebadi R, Tehrani M, Hosseini-Khah Z, Janbabaei G, et al. Upregulation of Galectin-9 and PD-L1 immune checkpoints molecules in patients with chronic lymphocytic leukemia. Asian Pacific J Cancer Prevent: APJCP. 2017;18(8):2269.

    Google Scholar 

  51. Zirlik K. MDSCs: the final frontier of the microenvironment in CLL? Blood, J Am Soc Hematol. 2014;124(5):666–8.

    CAS  Google Scholar 

  52. •• Hanna BS, Yazdanparast H, Demerdash Y, Roessner PM, Schulz R, Lichter P, et al. Combining ibrutinib and checkpoint blockade improves CD8+ T-cell function and control of chronic lymphocytic leukemia in E-TCL1 mice. Haematologica. 2021;106(4):968. Combination treatment with ibrutinib and blocking antibodies targeting PD-1/PD-L1 axis in vivo improved CD8+ T cell effector function and control of CLL progression.

    Article  PubMed  CAS  Google Scholar 

  53. Wierz M, Pierson S, Guyonnet L, Viry E, Lequeux A, Oudin A, et al. Dual PD1/LAG3 immune checkpoint blockade limits tumor development in a murine model of chronic lymphocytic leukemia. Blood, J Am Soc Hematol. 2018;131(14):1617–21.

    CAS  Google Scholar 

  54. •• Rezazadeh H, Astaneh M, Tehrani M, Hossein-Nataj H, Zaboli E, Shekarriz R, et al. Blockade of PD-1 and TIM-3 immune checkpoints fails to restore the function of exhausted CD8+ T cells in early clinical stages of chronic lymphocytic leukemia. Immunol Res. 2020;68(5):269–79. The use of anti-PD-1 and anti-Tim-3 blocking antibodies does not improve the function of exhausted CD8+ T cells in terms of proligeration, degranulation, and cytokine production in CLL patients at early clinical stages.

    Article  PubMed  CAS  Google Scholar 

  55. Astaneh M, Rezazadeh H, Hossein-Nataj H, Shekarriz R, Zaboli E, Shabani M, et al. Tim-3 and PD-1 blocking cannot restore the functional properties of natural killer cells in early clinical stages of chronic lymphocytic leukemia: an in vitro study. J Cancer Res Ther. 2022;18(3):704.

    Article  PubMed  CAS  Google Scholar 

  56. Jafarkhani S, Hossein-Nataj H, Eslami-Jouybari M, Ghoreishi M, Asgarian-Omran HJEO. PD-1 and TIM-3 blocking cannot enhance apoptosis of chronic lymphocytic leukemia cells induced by peripheral blood CD8+ T cells. Exp Oncol. 2022;44(4):287–94.

    Article  PubMed  CAS  Google Scholar 

  57. Armand P, Shipp MA, Ribrag V, Michot J-M, Zinzani PL, Kuruvilla J, et al. Programmed death-1 blockade with pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure. J Clin Oncol. 2016;34(31):3733.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Berger R, Rotem-Yehudar R, Slama G, Landes S, Kneller A, Leiba M, et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res. 2008;14(10):3044–51.

    Article  PubMed  CAS  Google Scholar 

  59. Du W, Yang M, Turner A, Xu C, Ferris RL, Huang J, et al. TIM-3 as a target for cancer immunotherapy and mechanisms of action. Int J Mol Sci. 2017;18(3):645.

    Article  PubMed  PubMed Central  Google Scholar 

  60. He Y, Cao J, Zhao C, Li X, Zhou C, Hirsch FR. TIM-3, a promising target for cancer immunotherapy. Onco Targets Ther. 2018;11:7005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Hadadi L, Hafezi M, Amirzargar AA, Sharifian RA, Abediankenari S, Asgarian-Omran H. Dysregulated expression of Tim-3 and NKp30 receptors on NK cells of patients with chronic lymphocytic leukemia. Oncol Res Treat. 2019;42(4):197–203.

    Article  CAS  Google Scholar 

  62. Das M, Zhu C, Kuchroo VK. Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev. 2017;276(1):97–111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Hosseini-Valiki F, Taghiloo S, Tavakolian G, Amjadi O, Tehrani M, Hedayatizadeh-Omran A, et al. Expression analysis of Fyn and Bat3 signal transduction molecules in patients with chronic lymphocytic leukemia. Asian Pac J Cancer Prev. 2020;21(9):2615.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Zhou Q, Munger ME, Veenstra RG, Weigel BJ, Hirashima M, Munn DH, et al. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood, J Am Soc Hematol. 2011;117(17):4501–10.

    CAS  Google Scholar 

  65. Fourcade J, Sun Z, Pagliano O, Chauvin J-M, Sander C, Janjic B, et al. PD-1 and tim-3 regulate the expansion of tumor antigen–specific CD8+ T cells induced by melanoma vaccines. Can Res. 2014;74(4):1045–55.

    Article  CAS  Google Scholar 

  66. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010;207(10):2187–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Ngiow SF, Von Scheidt B, Akiba H, Yagita H, Teng MW, Smyth MJ. Anti-TIM3 antibody promotes T cell IFN-γ–mediated antitumor immunity and suppresses established tumors. Can Res. 2011;71(10):3540–51.

    Article  CAS  Google Scholar 

  68. Zhang D, Jiang F, Zaynagetdinov R, Huang H, Sood VD, Wang H, et al. Identification and characterization of M6903, an antagonistic anti–TIM-3 monoclonal antibody. Oncoimmunology. 2020;9(1):1744921.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Oweida A, Hararah MK, Phan A, Binder D, Bhatia S, Lennon S, et al. Resistance to radiotherapy and PD-L1 blockade is mediated by TIM-3 upregulation and regulatory T-cell infiltration. Clin Cancer Res. 2018;24(21):5368–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Davar D, Boasberg P, Eroglu Z, Falchook G, Gainor J, Hamilton E. A phase 1 study of TSR-022 an anti-TIM-3 monoclonal antibody, in combination with TSR-042 (anti-PD-1) in patients with colorectal cancer and post-PD-1 NSCLC and melanoma. J Immunother Cancer. 2018;6(1):115O21.

    Google Scholar 

  71. Harding JJ, Moreno V, Bang Y-J, Hong MH, Patnaik A, Trigo J, et al. Blocking TIM-3 in treatment-refractory advanced solid tumors: a phase Ia/b study of LY3321367 with or without an anti-PD-L1 antibody. Clin Cancer Res. 2021;27(8):2168–78.

    Article  PubMed  CAS  Google Scholar 

  72. Curigliano G, Gelderblom H, Mach N, Doi T, Tai D, Forde PM, et al. Phase I/Ib clinical trial of sabatolimab, an anti–TIM-3 antibody, alone and in combination with spartalizumab, an anti–PD-1 antibody, in advanced solid tumors. Clin Cancer Res. 2021;27(13):3620–9.

    Article  PubMed  CAS  Google Scholar 

  73. Wdowiak K, Gallego-Colon E, Francuz T, Czajka-Francuz P, Ruiz-Agamez N, Kubeczko M, et al. Increased serum levels of Galectin-9 in patients with chronic lymphocytic leukemia. Oncol Lett. 2019;17(1):1019–29.

    PubMed  CAS  Google Scholar 

  74. Brunner A, Borate U, Esteve J, Porkka K, Knapper S, Vey N, et al. AML-190: anti-TIM-3 antibody MBG453 in combination with hypomethylating agents (HMAs) in patients with high-risk myelodysplastic syndrome (HR-MDS) and acute myeloid leukemia: a phase 1 study. Clin Lymphoma Myeloma Leuk. 2020;20:S188–9.

    Article  Google Scholar 

  75. Ge Z, Peppelenbosch MP, Sprengers D, Kwekkeboom J. TIGIT, the Next Step Towards Successful Combination Immune Checkpoint Therapy in Cancer. Front Immunol. 2021;12:699895. https://doi.org/10.3389/fimmu.2021.699895.

  76. Catakovic K, Gassner FJ, Ratswohl C, Zaborsky N, Rebhandl S, Schubert M, et al. TIGIT expressing CD4+ T cells represent a tumor-supportive T cell subset in chronic lymphocytic leukemia. Oncoimmunology. 2018;7(1):e1371399.

    Article  Google Scholar 

  77. Rotte A, Sahasranaman S, Budha N. Targeting TIGIT for immunotherapy of cancer: update on clinical development. Biomedicines. 2021;9(9):1277.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Yeo J, Ko M, Lee D-H, Park Y, Jin H-S. TIGIT/CD226 axis regulates anti-tumor immunity. Pharmaceuticals. 2021;14(3):200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Stamm H, Wellbrock J, Fiedler W. Interaction of PVR/PVRL2 with TIGIT/DNAM-1 as a novel immune checkpoint axis and therapeutic target in cancer. Mamm Genome. 2018;29(11):694–702.

    Article  PubMed  CAS  Google Scholar 

  80. Chauvin J-M, Pagliano O, Fourcade J, Sun Z, Wang H, Sander C, et al. TIGIT and PD-1 impair tumor antigen–specific CD8+ T cells in melanoma patients. J Clin Investig. 2015;125(5):2046–58.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ge Z, Zhou G, Carrascosa LC, Gausvik E, Boor PP, Noordam L, et al. TIGIT and PD1 co-blockade restores ex vivo functions of human tumor-infiltrating CD8+ T cells in hepatocellular carcinoma. Cell Mol Gastroenterol Hepatol. 2021;12(2):443–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Dixon KO, Schorer M, Nevin J, Etminan Y, Amoozgar Z, Kondo T, et al. Functional anti-TIGIT antibodies regulate development of autoimmunity and antitumor immunity. J Immunol. 2018;200(8):3000–7.

    Article  PubMed  CAS  Google Scholar 

  83. Chiu DK-C, Yuen VW-H, Cheu JW-S, Wei LL, Ting V, Fehlings M, et al. Hepatocellular carcinoma cells up-regulate PVRL1, stabilizing PVR and inhibiting the cytotoxic T-cell response via TIGIT to mediate tumor resistance to PD1 inhibitors in mice. Gastroenterology. 2020;159(2):609–23.

    Article  PubMed  CAS  Google Scholar 

  84. Guillerey C, Harjunpää H, Carrié N, Kassem S, Teo T, Miles K, et al. TIGIT immune checkpoint blockade restores CD8+ T-cell immunity against multiple myeloma. Blood, J Am Soc Hematol. 2018;132(16):1689–94.

    CAS  Google Scholar 

  85. Rodriguez-Abreu D, Johnson ML, Hussein MA, Cobo M, Patel AJ, Secen NM, et al. Primary analysis of a randomized, double-blind, phase II study of the anti-TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first-line (1L) treatment in patients with PD-L1-selected NSCLC (CITYSCAPE). American Society of Clinical Oncology. 2020;9503.

  86. Wainberg Z, Matos I, Delord J, Cassier P, Gil-Martin M, Kim T, et al. LBA-5 Phase Ib study of the anti-TIGIT antibody tiragolumab in combination with atezolizumab in patients with metastatic esophageal cancer. AAPS J. 2021;32:S227–8.

    Google Scholar 

  87. Ahn M, Niu J, Kim D, Rasco D, Mileham K, Chung H, et al. 1400P Vibostolimab, an anti-TIGIT antibody, as monotherapy and in combination with pembrolizumab in anti-PD-1/PD-L1-refractory NSCLC. Ann Oncol. 2020;31:S887.

    Article  Google Scholar 

  88. Hajiasghar-Sharbaf R, Asgarian-Omran H, Valadan R, Hossein-Nattaj H, Shekarriz R, Zaboli E, et al. CD8+ T-cells co-expressing PD-1 and TIGIT are highly frequent in chronic lymphocytic leukemia PD-1 and TIGIT co-expression in CLL. Iran J Allergy Asthma Immunol. 2021;20(6):751.

    PubMed  Google Scholar 

  89. Hatefi F, Asgarian-Omran H, Hossein-Nataj H, Akbar A, Shekarriz R, Zaboli E, et al. Combined blockade of PD-1 and TIGIT is not sufficient to improve the function Of CD8+ T-cells in chronic lymphocytic leukemia. Asian Pac J Cancer Prev. 2022;23(7):2225–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. • Sordo-Bahamonde C, Lorenzo-Herrero S, González-Rodríguez AP, Payer ÁR, González-García E, López-Soto A, et al. LAG-3 blockade with relatlimab (BMS-986016) restores anti-leukemic responses in chronic lymphocytic leukemia. Cancers. 2021;13(9):2112. Treatment of PBMCs from CLL patients with relatlimab, as anti-LAG-3 blocking antibody, depleted leukemic cells and restored T cell- and NK cell-mediated immunity.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Maruhashi T, Sugiura D, Okazaki IM, Okazaki T. LAG-3: from molecular functions to clinical applications. J Immunother Cancer. 2020;8(2):e001014. https://doi.org/10.1136/jitc-2020-001014.

  92. Woo S-R, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Can Res. 2012;72(4):917–27.

    Article  CAS  Google Scholar 

  93. Solinas C, Migliori E, De Silva P, Willard-Gallo K. LAG3: the biological processes that motivate targeting this immune checkpoint molecule in human cancer. Cancers. 2019;11(8):1213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Lecocq Q, Keyaerts M, Devoogdt N, Breckpot K. The next-generation immune checkpoint LAG-3 and its therapeutic potential in oncology: third time’sa charm. Int J Mol Sci. 2020;22(1):75.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Deng W-W, Mao L, Yu G-T, Bu L-L, Ma S-R, Liu B, et al. LAG-3 confers poor prognosis and its blockade reshapes antitumor response in head and neck squamous cell carcinoma. Oncoimmunology. 2016;5(11):e1239005.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Que Y, Fang Z, Guan Y, Xiao W, Xu B, Zhao J, et al. LAG-3 expression on tumor-infiltrating T cells in soft tissue sarcoma correlates with poor survival. Cancer Biol Med. 2019;16(2):331.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Huang R-Y, Eppolito C, Lele S, Shrikant P, Matsuzaki J, Odunsi K. LAG3 and PD1 co-inhibitory molecules collaborate to limit CD8+ T cell signaling and dampen antitumor immunity in a murine ovarian cancer model. Oncotarget. 2015;6(29):27359.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Qi Y, Chen L, Liu Q, Kong X, Fang Y, Wang J. Research Progress Concerning Dual Blockade of Lymphocyte-Activation Gene 3 and Programmed Death-1/Programmed Death-1 Ligand-1 Blockade in Cancer Immunotherapy: Preclinical and Clinical Evidence of This Potentially More Effective Immunotherapy Strategy. Front Immunol. 2021;11:563258. https://doi.org/10.3389/fimmu.2020.563258.

  99. Ascierto P, Bono P, Bhatia S, Melero I, Nyakas M, Svane I, et al. Efficacy of BMS-986016, a monoclonal antibody that targets lymphocyte activation gene-3 (LAG-3), in combination with nivolumab in pts with melanoma who progressed during prior anti–PD-1/PD-L1 therapy (mel prior IO) in all-comer and biomarker-enriched populations. Ann Oncol. 2017;28:v611–2.

    Article  Google Scholar 

  100. Hong DS, Schoffski P, Calvo A, Sarantopoulos J, Ochoa De Olza M, Carvajal RD, et al. Phase I/ II study of LAG525±spartalizumab (PDR001) in patients (pts) with advanced malignancies. American Society of Clinical Oncology. 2018;3012.

  101. Fougeray S, Brignone C, Triebel F. A soluble LAG-3 protein as an immunopotentiator for therapeutic vaccines: preclinical evaluation of IMP321. Vaccine. 2006;24(26):5426–33.

    Article  PubMed  CAS  Google Scholar 

  102. Brignone C, Escudier B, Grygar C, Marcu M, Triebel F. A phase I pharmacokinetic and biological correlative study of IMP321, a novel MHC class II agonist, in patients with advanced renal cell carcinoma. Clin Cancer Res. 2009;15(19):6225–31.

    Article  PubMed  CAS  Google Scholar 

  103. Graydon CG, Mohideen S, Fowke KR. LAG3's Enigmatic Mechanism of Action. Front Immunol. 2021;11:615317. https://doi.org/10.3389/fimmu.2020.615317.

  104. Puhr HC, Ilhan-Mutlu A. New emerging targets in cancer immunotherapy: the role of LAG3. ESMO open. 2019;4(2):e000482.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Murphy TL, Murphy KM. Slow down and survive: enigmatic immunoregulation by BTLA and HVEM. Annu Rev Immunol. 2009;28:389–411.

    Article  Google Scholar 

  106. Sordo-Bahamonde C, Lorenzo-Herrero S, Gonzalez-Rodriguez AP, Payer RÁ, González-García E, López-Soto A, et al. BTLA/HVEM axis induces NK cell immunosuppression and poor outcome in chronic lymphocytic Leukemia. Cancers. 2021;13(8):1766.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Hobo W, Norde WJ, Schaap N, Fredrix H, Maas F, Schellens K, et al. B and T lymphocyte attenuator mediates inhibition of tumor-reactive CD8+ T cells in patients after allogeneic stem cell transplantation. J Immunol. 2012;189(1):39–49.

    Article  PubMed  CAS  Google Scholar 

  108. Quan L, Lan X, Meng Y, Guo X, Guo Y, Zhao L, et al. BTLA marks a less cytotoxic T-cell subset in diffuse large B-cell lymphoma with high expression of checkpoints. Exp Hematol. 2018;60:47-56 e1.

    Article  PubMed  CAS  Google Scholar 

  109. Oguro S, Ino Y, Shimada K, Hatanaka Y, Matsuno Y, Esaki M, et al. Clinical significance of tumor-infiltrating immune cells focusing on BTLA and Cbl-b in patients with gallbladder cancer. Cancer Sci. 2015;106(12):1750–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Wang Q, Ye Y, Yu H, Lin S-H, Tu H, Liang D, et al. Immune checkpoint-related serum proteins and genetic variants predict outcomes of localized prostate cancer, a cohort study. Cancer Immunol Immunother. 2021;70(3):701–12.

    Article  PubMed  CAS  Google Scholar 

  111. Lan X, Li S, Gao H, Nanding A, Quan L, Yang C, et al. Increased BTLA and HVEM in gastric cancer are associated with progression and poor prognosis. Onco Targets Ther. 2017;10:919.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Fourcade J, Sun Z, Pagliano O, Guillaume P, Luescher IF, Sander C, et al. CD8+ T cells specific for tumor antigens can be rendered dysfunctional by the tumor microenvironment through upregulation of the inhibitory receptors BTLA and PD-1. Can Res. 2012;72(4):887–96.

    Article  CAS  Google Scholar 

  113. Demerlé C, Gorvel L, Olive D. BTLA-HVEM Couple in Health and Diseases: Insights for Immunotherapy in Lung Cancer. Front Oncol. 2021;11:682007. https://doi.org/10.3389/fonc.2021.682007.

  114. Inoue T, Sho M, Yasuda S, Nishiwada S, Nakamura S, Ueda T, et al. HVEM expression contributes to tumor progression and prognosis in human colorectal cancer. Anticancer Res. 2015;35(3):1361–7.

    PubMed  Google Scholar 

  115. Han M-Z, Wang S, Zhao W-B, Ni S-L, Yang N, Kong Y, et al. Immune checkpoint molecule herpes virus entry mediator is overexpressed and associated with poor prognosis in human glioblastoma. EBioMedicine. 2019;43:159–70.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Malissen N, Macagno N, Granjeaud S, Granier C, Moutardier V, Gaudy-Marqueste C, et al. HVEM has a broader expression than PD-L1 and constitutes a negative prognostic marker and potential treatment target for melanoma. Oncoimmunology. 2019;8(12):e1665976.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Ren S, Tian Q, Amar N, Yu H, Rivard CJ, Caldwell C, et al. The immune checkpoint, HVEM may contribute to immune escape in non-small cell lung cancer lacking PD-L1 expression. Lung Cancer. 2018;125:115–20.

    Article  PubMed  Google Scholar 

  118. Tsang J, Chan K-W, Ni Y-B, Hlaing T, Hu J, Chan S-K, et al. Expression and clinical significance of herpes virus entry mediator (HVEM) in breast cancer. Ann Surg Oncol. 2017;24(13):4042–50.

    Article  PubMed  Google Scholar 

  119. Hokuto D, Sho M, Yamato I, Yasuda S, Obara S, Nomi T, et al. Clinical impact of herpesvirus entry mediator expression in human hepatocellular carcinoma. Eur J Cancer. 2015;51(2):157–65.

    Article  PubMed  CAS  Google Scholar 

  120. Migita K, Sho M, Shimada K, Yasuda S, Yamato I, Takayama T, et al. Significant involvement of herpesvirus entry mediator in human esophageal squamous cell carcinoma. Cancer. 2014;120(6):808–17.

    Article  PubMed  CAS  Google Scholar 

  121. Tang M, Cao X, Li Y, Li G-Q, He Q-H, Li S-J, et al. High expression of herpes virus entry mediator is associated with poor prognosis in clear cell renal cell carcinoma. Am J Cancer Res. 2019;9(5):975.

    PubMed  PubMed Central  CAS  Google Scholar 

  122. Chen Y-L, Lin H-W, Chien C-L, Lai Y-L, Sun W-Z, Chen C-A, et al. BTLA blockade enhances cancer therapy by inhibiting IL-6/IL-10-induced CD19high B lymphocytes. J Immunother Cancer. 2019;7(1):1–14.

    Article  Google Scholar 

  123. Choi J, Medikonda R, Saleh L, Kim T, Pant A, Srivastava S, et al. Combination checkpoint therapy with anti-PD-1 and anti-BTLA results in a synergistic therapeutic effect against murine glioblastoma. Oncoimmunology. 2021;10(1):1956142.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Aubert N, Brunel S, Olive D, Marodon G. Blockade of HVEM for prostate cancer immunotherapy in humanized mice. Cancers. 2021;13(12):3009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Park J-J, Anand S, Zhao Y, Matsumura Y, Sakoda Y, Kuramasu A, et al. Expression of anti-HVEM single-chain antibody on tumor cells induces tumor-specific immunity with long-term memory. Cancer Immunol Immunother. 2012;61(2):203–14.

    Article  PubMed  CAS  Google Scholar 

  126. Kang SH, Hwang HJ, Yoo JW, Kim H, Choi ES, Hwang S-H, et al. Expression of immune checkpoint receptors on T-cells and their ligands on leukemia blasts in childhood acute leukemia. Anticancer Res. 2019;39(10):5531–9.

    Article  PubMed  CAS  Google Scholar 

  127. M’Hidi H, Thibult M-L, Chetaille B, Rey F, Bouadallah R, Nicollas R, et al. High expression of the inhibitory receptor BTLA in T-follicular helper cells and in B-cell small lymphocytic lymphoma/chronic lymphocytic leukemia. Am J Clin Pathol. 2009;132(4):589–96.

    Article  PubMed  Google Scholar 

  128. Karabon L, Partyka A, Ciszak L, Pawlak-Adamska E, Tomkiewicz A, Bojarska-Junak A, Roliński J, Wołowiec D, Wrobel T, Frydecka I, Kosmaczewska A. Abnormal Expression of BTLA and CTLA-4 Immune Checkpoint Molecules in Chronic Lymphocytic Leukemia Patients. J Immunol Res. 2020;2020:6545921. https://doi.org/10.1155/2020/6545921.

  129. Karabon L, Partyka A, Jasek M, Lech-Maranda E, Grzybowska-Izydorczyk O, Bojarska-Junak A, et al. Intragenic variations in BTLA gene influence mRNA expression of BTLA gene in chronic lymphocytic leukemia patients and confer susceptibility to chronic lymphocytic leukemia. Arch Immunol Ther Exp. 2016;64(1):137–45.

    Article  CAS  Google Scholar 

  130. Lesesve JF, Tardy S, Frotscher B, Latger-Cannard V, Feugier P, de Carvalho BM. Combination of CD 160 and CD 200 as a useful tool for differential diagnosis between chronic lymphocytic leukemia and other mature B-cell neoplasms. Int J Lab Hematol. 2015;37(4):486–94.

    Article  PubMed  Google Scholar 

  131. Liu F-T, Giustiniani J, Farren T, Jia L, Bensussan A, Gribben JG, et al. CD160 signaling mediates PI3K-dependent survival and growth signals in chronic lymphocytic leukemia. Blood, J Am Soc Hematol. 2010;115(15):3079–88.

    CAS  Google Scholar 

  132. Mahadevan D, Lanasa MC, Farber C, Pandey M, Whelden M, Faas SJ, et al. Phase I study of samalizumab in chronic lymphocytic leukemia and multiple myeloma: blockade of the immune checkpoint CD200. J Immunother Cancer. 2019;7(1):1–13.

    Article  Google Scholar 

  133. Wright G, Jones M, Puklavec M, Brown M, Barclay A. The unusual distribution of the neuronal/lymphoid cell surface CD200 (OX2) glycoprotein is conserved in humans. Immunology. 2001;102(2):173–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Gorczynski RM. CD200: CD200R-mediated regulation of immunity. International Scholarly Research Notices. 2012;2012.

  135. Holmannová D, Kolácková M, Kondélková K, Kunes P, Krejsek J, Andrys C. CD200/CD200R paired potent inhibitory molecules regulating immune and inflammatory responses; Part I: CD200/CD200R structure, activation, and function. Acta Medica. 2012;55(1):12–7.

    PubMed  Google Scholar 

  136. Moreaux J, Veyrune JL, Reme T, De Vos J, Klein B. CD200: a putative therapeutic target in cancer. Biochem Biophys Res Commun. 2008;366(1):117–22.

    Article  PubMed  CAS  Google Scholar 

  137. Moreaux J, Hose D, Reme T, Jourdan E, Hundemer M, Legouffe E, et al. CD200 is a new prognostic factor in multiple myeloma. Blood. 2006;108(13):4194–7.

    Article  PubMed  CAS  Google Scholar 

  138. Liu JQ, Hu A, Zhu J, Yu J, Talebian F, Bai XF. CD200-CD200R Pathway in the Regulation of Tumor Immune Microenvironment and Immunotherapy. Adv Exp Med Biol. 2020;1223:155–65. https://doi.org/10.1007/978-3-030-35582-1_8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Podnos A, Clark DA, Erin N, Yu K, Gorczynski RM. Further evidence for a role of tumor CD200 expression in breast cancer metastasis: decreased metastasis in CD200R1KO mice or using CD200-silenced EMT6. Breast Cancer Res Treat. 2012;136(1):117–27.

    Article  PubMed  CAS  Google Scholar 

  140. Erin N, Podnos A, Tanriover G, Duymuş Ö, Cote E, Khatri I, et al. Bidirectional effect of CD200 on breast cancer development and metastasis, with ultimate outcome determined by tumor aggressiveness and a cancer-induced inflammatory response. Oncogene. 2015;34(29):3860–70.

    Article  PubMed  CAS  Google Scholar 

  141. D'Arena G, De Feo V, Pietrantuono G, Seneca E, Mansueto G, Villani O, La Rocca F, D'Auria F, Statuto T, Valvano L, Arruga F, Deaglio S, Efremov DG, Sgambato A, Laurenti L. CD200 and Chronic Lymphocytic Leukemia: Biological and Clinical Relevance. Front Oncol. 2020;10:584427. https://doi.org/10.3389/fonc.2020.584427.

  142. Kretz-Rommel A, Qin F, Dakappagari N, Ravey EP, McWhirter J, Oltean D, et al. CD200 expression on tumor cells suppresses antitumor immunity: new approaches to cancer immunotherapy. J Immunol. 2007;178(9):5595–605.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.T. contributed to the study design as well as writing of the manuscript. H.AO. supervised the study and contributed to the study concept, editing, and final approval of the manuscript.

Ethical approval

Not applicable.

Corresponding author

Correspondence to Hossein Asgarian-Omran PhD.

Ethics declarations

Conflict of interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghiloo, S., Asgarian-Omran, H. Current Approaches of Immune Checkpoint Therapy in Chronic Lymphocytic Leukemia. Curr. Treat. Options in Oncol. 24, 1408–1438 (2023). https://doi.org/10.1007/s11864-023-01129-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-023-01129-5

Keywords