Skip to main content

Advertisement

Log in

Enhanced Photodynamic Therapy by Improved Light Energy Capture Efficiency of Porphyrin Photosensitizers

  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion Statement

Photodynamic therapy (PDT) has garnered increasing attention in cancer treatment because of its advantages such as minimal invasiveness and selective destruction. With the development of PDT, impressive progress has been made in the preparation of photosensitizers, particularly porphyrin photosensitizers. However, the limited tissue penetration of the activating light wavelengths and relatively low light energy capture efficiency of porphyrin photosensitizers are two major disadvantages in conventional photosensitizers. Therefore, tissue penetration needs to be enhanced and the light energy capture efficiency of porphyrin photosensitizers improved through structural modifications. The indirect excitation of porphyrin photosensitizers using fluorescent donors (fluorescence resonance energy transfer) has been successfully used to address these issues. In this review, the enhancement of the light energy capture efficiency of porphyrins is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as:• Of importance •• Of major importance

  1. Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kedzierska E, Knap-Czop K, et al. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098–107. https://doi.org/10.1016/j.biopha.2018.07.049.

    Article  CAS  PubMed  Google Scholar 

  2. Correia JH, Rodrigues JA, Pimenta S, Dong T, Yang Z. Photodynamic therapy review: principles, photosensitizers, applications, and future directions. Pharmaceutics. 2021;13(9):1332. https://doi.org/10.3390/pharmaceutics13091332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kessel D. Photodynamic Therapy: A Brief History. J Clin Med. 2019;8(10):1581. https://doi.org/10.3390/jcm8101581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ji B, Wei M, Yang B. Recent advances in nanomedicines for photodynamic therapy (PDT)-driven cancer immunotherapy. Theranostics. 2022;12(1):434–58. https://doi.org/10.7150/thno.67300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li X, Lee S, Yoon J. Supramolecular photosensitizers rejuvenate photodynamic therapy. Chem Soc Rev. 2018;47(4):1174–88. https://doi.org/10.1039/c7cs00594f.

    Article  CAS  PubMed  Google Scholar 

  6. Dobson J, de Queiroz GF, Golding JP. Photodynamic therapy and diagnosis: principles and comparative aspects. Vet J. 2018;233:8–18. https://doi.org/10.1016/j.tvjl.2017.11.012.

    Article  CAS  PubMed  Google Scholar 

  7. Banerjee SM, MacRobert AJ, Mosse CA, Periera B, Bown SG, Keshtgar MRS. Photodynamic therapy: Inception to application in breast cancer. Breast. 2017;31:105–13. https://doi.org/10.1016/j.breast.2016.09.016.

    Article  CAS  PubMed  Google Scholar 

  8. Bouramtane S, Bretin L, Pinon A, Leger D, Liagre B, Richard L, et al. Porphyrin-xylan-coated silica nanoparticles for anticancer photodynamic therapy. Carbohydr Polym. 2019;213:168–75. https://doi.org/10.1016/j.carbpol.2019.02.070.

    Article  CAS  PubMed  Google Scholar 

  9. Hou YJ, Yang XX, Liu RQ, Zhao D, Guo CX, Zhu AC, et al. Pathological mechanism of photodynamic therapy and photothermal therapy based on nanoparticles. Int J Nanomedicine. 2020;15:6827–38. https://doi.org/10.2147/IJN.S269321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gustalik J, Aebisher D, Bartusik-Aebisher D. Photodynamic therapy in breast cancer treatment. J Appl Biomed. 2022;20(3):98–105. https://doi.org/10.32725/jab.2022.013.

    Article  PubMed  Google Scholar 

  11. Sharma B, Jain A, Perez-Garcia L, Watts JA, Rawson FJ, Chaudhary GR, et al. Metallocatanionic vesicle-mediated enhanced singlet oxygen generation and photodynamic therapy of cancer cells. J Mater Chem B. 2022;10(13):2160–70. https://doi.org/10.1039/d2tb00011c.

    Article  CAS  PubMed  Google Scholar 

  12. Lu F, Pan L, Wu T, Pan W, Gao W, Li N, et al. An endoperoxide-containing covalent organic framework as a singlet oxygen reservoir for cancer therapy. Chem Commun (Camb). 2022;58(78):11013–6. https://doi.org/10.1039/d2cc04026c.

    Article  CAS  PubMed  Google Scholar 

  13. Lin Y, Zhou T, Bai R, Xie Y. Chemical approaches for the enhancement of porphyrin skeleton-based photodynamic therapy. J Enzyme Inhib Med Chem. 2020;35(1):1080–99. https://doi.org/10.1080/14756366.2020.1755669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gomes A, Neves M, Cavaleiro JAS. Cancer, photodynamic therapy and porphyrin-type derivatives. An Acad Bras Cienc. 2018;90(1 Suppl 2):993–1026. https://doi.org/10.1590/0001-3765201820170811.

    Article  CAS  PubMed  Google Scholar 

  15. Senge MO, Sergeeva NN, Hale KJ. Classic highlights in porphyrin and porphyrinoid total synthesis and biosynthesis. Chem Soc Rev. 2021;50(7):4730–89. https://doi.org/10.1039/c7cs00719a.

    Article  CAS  PubMed  Google Scholar 

  16. Pan L, Ma Y, Wu X, Cai H, Qin F, Wu H, et al. A brief introduction to porphyrin compounds used in tumor imaging and therapies. Mini Rev Med Chem. 2021;21(11):1303–13. https://doi.org/10.2174/1389557520999201209212745.

    Article  CAS  PubMed  Google Scholar 

  17. Chen J, Zhu Y, Kaskel S. Porphyrin-based metal-organic frameworks for biomedical applications. Angew Chem Int Ed Engl. 2021;60(10):5010–35. https://doi.org/10.1002/anie.201909880.

    Article  CAS  PubMed  Google Scholar 

  18. Yu W, Zheng S. A computational investigation about the effect of metal substitutions on the electronic spectra of porphyrin donors in the visible and near infrared regions. Spectrochim Acta A Mol Biomol Spectrosc. 2022;282:121676 https://doi.org/10.1016/j.saa.2022.121676.

  19. Tsolekile N, Nelana S, Oluwafemi OS. Porphyrin as diagnostic and therapeutic agent. Molecules. 2019;24(14):2669. https://doi.org/10.3390/molecules24142669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liang X, Chen M, Bhattarai P, Hameed S, Tang Y, Dai Z. Complementing cancer photodynamic therapy with ferroptosis through iron oxide loaded porphyrin-grafted lipid nanoparticles. ACS Nano. 2021;15(12):20164–80. https://doi.org/10.1021/acsnano.1c08108.

    Article  CAS  PubMed  Google Scholar 

  21. Jiao J, He J, Li M, Yang J, Yang H, Wang X, et al. A porphyrin-based metallacage for enhanced photodynamic therapy. Nanoscale. 2022;14(17):6373–83. https://doi.org/10.1039/d1nr08293k.

    Article  CAS  PubMed  Google Scholar 

  22. Xiong Y, Tian X, Ai HW. Molecular tools to generate reactive oxygen species in biological systems. Bioconjug Chem. 2019;30(5):1297–303. https://doi.org/10.1021/acs.bioconjchem.9b00191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dougherty TJ, Kaufman JE, Goldfarb A, Weishaupt KR, Boyle D, Mittleman A. Photoradiation therapy for the treatment of malignant tumors. Can Res. 1978;38(8):2628–35.

    CAS  Google Scholar 

  24. Habermeyer B, Guilard R. Some activities of PorphyChem illustrated by the applications of porphyrinoids in PDT. PIT and PDI Photochem Photobiol Sci. 2018;17(11):1675–90. https://doi.org/10.1039/c8pp00222c.

    Article  CAS  PubMed  Google Scholar 

  25. Li M, Xu Y, Pu Z, Xiong T, Huang H, Long S, et al. Photoredox catalysis may be a general mechanism in photodynamic therapy. Proc Natl Acad Sci U S A. 2022;119(34):e2210504119. https://doi.org/10.1073/pnas.2210504119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Montaseri H, Kruger CA, Abrahamse H. Recent advances in porphyrin-based inorganic nanoparticles for cancer treatment. Int J Mol Sci. 2020;21(9):3358. https://doi.org/10.3390/ijms21093358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pushpanandan P, Ravikanth M. Synthesis and Properties of Stable 20pi Porphyrinoids. Chem Rec. 2022;22(11):e202200144. https://doi.org/10.1002/tcr.202200144.

    Article  CAS  PubMed  Google Scholar 

  28. Hilmey DG, Abe M, Nelen MI, Stilts CE, Baker GA, Baker SN et al. Water-soluble, core-modified porphyrins as novel, longer-wavelength-absorbing sensitizers for photodynamic therapy. II. Effects of core heteroatoms and meso-substituents on biological activity. Journal of medicinal chemistry. 2002;45(2):449–61 https://doi.org/10.1021/jm0103662.

  29. Cheng M, Cui YX, Wang J, Zhang J, Zhu LN, Kong DM. G-Quadruplex/porphyrin composite photosensitizer: a facile way to promote absorption redshift and photodynamic therapy efficacy. ACS Appl Mater Interfaces. 2019;11(14):13158–67. https://doi.org/10.1021/acsami.9b02695.

    Article  CAS  PubMed  Google Scholar 

  30. Chan AL, Juarez M, Allen R, Volz W, A T. Pharmacokinetics and clinical effects of mono-L-aspartyl chlorin e6 (NPe6) photodynamic therapy in adult patients with primary or secondary cancer of the skin and mucosal surfaces. Photodermatology, photoimmunology & photomedicine. 2005;21(2):72–8. https://doi.org/10.1111/j.1600-0781.2005.00138.x.

    Article  CAS  Google Scholar 

  31. Bellnier DA, Greco WR, Nava H, Loewen GM, Oseroff AR, Dougherty TJ. Mild skin photosensitivity in cancer patients following injection of Photochlor (2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a; HPPH) for photodynamic therapy. Cancer Chemother Pharmacol. 2006;57(1):40–5. https://doi.org/10.1007/s00280-005-0015-6.

    Article  CAS  PubMed  Google Scholar 

  32. Lovejoy KS, Lippard SJ. Non-traditional platinum compounds for improved accumulation, oral bioavailability, and tumor targeting. Dalton Trans. 2009;48:10651–9. https://doi.org/10.1039/b913896j.

    Article  CAS  Google Scholar 

  33. Zhang Z, Yu HJ, Wu S, Huang H, Si LP, Liu HY, et al. Synthesis, characterization, and photodynamic therapy activity of 5,10,15,20-Tetrakis(carboxyl)porphyrin. Bioorg Med Chem. 2019;27(12):2598–608. https://doi.org/10.1016/j.bmc.2019.03.051.

    Article  CAS  PubMed  Google Scholar 

  34. Xie J, Liang C, Luo S, Pan Z, Lai Y, He J, et al. Water-soluble iridic-porphyrin complex for non-invasive sonodynamic and sono-oxidation therapy of deep tumors. ACS Appl Mater Interfaces. 2021;13(24):27934–44. https://doi.org/10.1021/acsami.1c06381.

    Article  CAS  PubMed  Google Scholar 

  35. Zhu Z, Wang Z, Zhang C, Wang Y, Zhang H, Gan Z, et al. Mitochondrion-targeted platinum complexes suppressing lung cancer through multiple pathways involving energy metabolism. Chem Sci. 2019;10(10):3089–95. https://doi.org/10.1039/c8sc04871a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang P, Huang H, Banerjee S, Clarkson GJ, Ge C, Imberti C, et al. Nucleus-targeted organoiridium-albumin conjugate for photodynamic cancer therapy. Angew Chem Int Ed Engl. 2019;58(8):2350–4. https://doi.org/10.1002/anie.201813002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Imberti C, Zhang P, Huang H, Sadler PJ. New designs for phototherapeutic transition metal complexes. Angew Chem Int Ed Engl. 2020;59(1):61–73. https://doi.org/10.1002/anie.201905171.

    Article  CAS  PubMed  Google Scholar 

  38. Cabrera-Gonzalez J, Soriano J, Conway-Kenny R, Wang J, Lu Y, Zhao J, et al. Multinuclear Ru(ii) and Ir(iii) decorated tetraphenylporphyrins as efficient PDT agents. Biomater Sci. 2019;7(8):3287–96. https://doi.org/10.1039/c9bm00192a.

    Article  CAS  PubMed  Google Scholar 

  39. Schmitt F, Govindaswamy P, Zava O, Suss-Fink G, Juillerat-Jeanneret L, Therrien B. Combined arene ruthenium porphyrins as chemotherapeutics and photosensitizers for cancer therapy. J Biol Inorg Chem. 2009;14(1):101–9. https://doi.org/10.1007/s00775-008-0427-y.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang J, Wong KL, Wong WK, Mak NK, Kwong DW, Tam HL. Two-photon induced luminescence, singlet oxygen generation, cellular uptake and photocytotoxic properties of amphiphilic Ru(II) polypyridyl-porphyrin conjugates as potential bifunctional photodynamic therapeutic agents. Org Biomol Chem. 2011;9(17):6004–10. https://doi.org/10.1039/c1ob05415e.

    Article  CAS  PubMed  Google Scholar 

  41. Ji C, Gao Q, Dong X, Yin W, Gu Z, Gan Z, et al. A size-reducible nanodrug with an aggregation-enhanced photodynamic effect for deep chemo-photodynamic therapy. Angew Chem Int Ed Engl. 2018;57(35):11384–8. https://doi.org/10.1002/anie.201807602.

    Article  CAS  PubMed  Google Scholar 

  42. Liu K, Liu Y, Yao Y, Yuan H, Wang S, Wang Z, et al. Supramolecular photosensitizers with enhanced antibacterial efficiency. Angew Chem Int Ed Engl. 2013;52(32):8285–9. https://doi.org/10.1002/anie.201303387.

    Article  CAS  PubMed  Google Scholar 

  43. Zheng N, Li X, Huangfu S, Xia K, Yue R, Wu H, et al. Linear and high-molecular-weight poly-porphyrins for efficient photodynamic therapy. Biomater Sci. 2021;9(13):4630–8. https://doi.org/10.1039/d1bm00117e.

    Article  CAS  PubMed  Google Scholar 

  44. Li YX, Liu Y, Wang H, Li ZT, Zhang DW. Water-soluble porphyrin-based nanoparticles derived from electrostatic interaction for enhanced photodynamic therapy. ACS Appl Bio Mater. 2022;5(2):881–8. https://doi.org/10.1021/acsabm.1c01262.

    Article  CAS  PubMed  Google Scholar 

  45. Liu K, Xing R, Zou Q, Ma G, Mohwald H, Yan X. Simple peptide-tuned self-assembly of photosensitizers towards anticancer photodynamic therapy. Angew Chem Int Ed Engl. 2016;55(9):3036–9. https://doi.org/10.1002/anie.201509810.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang X, Gong C, Akakuru OU, Su Z, Wu A, Wei G. The design and biomedical applications of self-assembled two-dimensional organic biomaterials. Chem Soc Rev. 2019;48(23):5564–95. https://doi.org/10.1039/c8cs01003j.

    Article  CAS  PubMed  Google Scholar 

  47. Grzelczak M, Liz-Marzan LM, Klajn R. Stimuli-responsive self-assembly of nanoparticles. Chem Soc Rev. 2019;48(5):1342–61. https://doi.org/10.1039/c8cs00787j.

    Article  CAS  PubMed  Google Scholar 

  48. Chen J, Zou X. Self-assemble peptide biomaterials and their biomedical applications. Bioact Mater. 2019;4:120–31. https://doi.org/10.1016/j.bioactmat.2019.01.002.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hasannia M, Aliabadi A, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Synthesis of block copolymers used in polymersome fabrication: application in drug delivery. J Control Release. 2022;341:95–117. https://doi.org/10.1016/j.jconrel.2021.11.010.

    Article  CAS  PubMed  Google Scholar 

  50. Ding H, Yu H, Dong Y, Tian R, Huang G, Boothman DA, et al. Photoactivation switch from type II to type I reactions by electron-rich micelles for improved photodynamic therapy of cancer cells under hypoxia. J Control Release. 2011;156(3):276–80. https://doi.org/10.1016/j.jconrel.2011.08.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Avci P, Erdem SS, Hamblin MR. Photodynamic therapy: one step ahead with self-assembled nanoparticles. J Biomed Nanotechnol. 2014;10(9):1937–52. https://doi.org/10.1166/jbn.2014.1953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jin J, Zhu Y, Zhang Z, Zhang W. Enhancing the efficacy of photodynamic therapy through a porphyrin/POSS alternating copolymer. Angew Chem Int Ed Engl. 2018;57(50):16354–8. https://doi.org/10.1002/anie.201808811.

    Article  CAS  PubMed  Google Scholar 

  53. Nowak-Krol A, Wilson CJ, Drobizhev M, Kondratuk DV, Rebane A, Anderson HL, et al. Amplified two-photon absorption in trans-A2B2-porphyrins bearing nitrophenylethynyl substituents. ChemPhysChem. 2012;13(17):3966–72. https://doi.org/10.1002/cphc.201200507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pan D, Liang P, Zhong X, Wang D, Cao H, Wang W, et al. Self-assembled porphyrin-based nanoparticles with enhanced near-infrared absorbance for fluorescence imaging and cancer photodynamic therapy. ACS Appl Bio Mater. 2019;2(3):999–1005. https://doi.org/10.1021/acsabm.8b00530.

    Article  CAS  PubMed  Google Scholar 

  55. Cai Y, Si W, Huang W, Chen P, Shao J, Dong X. Organic dye based nanoparticles for cancer phototheranostics. Small. 2018;14(25):e1704247. https://doi.org/10.1002/smll.201704247.

    Article  CAS  PubMed  Google Scholar 

  56. Feng L, Zhu C, Yuan H, Liu L, Lv F, Wang S. Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chem Soc Rev. 2013;42(16):6620–33. https://doi.org/10.1039/c3cs60036j.

    Article  CAS  PubMed  Google Scholar 

  57. Yang M, Cao S, Sun X, Su H, Li H, Liu G, et al. Self-assembled naphthalimide conjugated porphyrin nanomaterials with D-A structure for PDT/PTT synergistic therapy. Bioconjug Chem. 2020;31(3):663–72. https://doi.org/10.1021/acs.bioconjchem.9b00819.

    Article  CAS  PubMed  Google Scholar 

  58. Murthy NS, Wang W, Sommerfeld SD, Vaknin D, Kohn J. Temperature-activated PEG surface segregation controls the protein repellency of polymers. Langmuir. 2019;35(30):9769–76. https://doi.org/10.1021/acs.langmuir.9b00702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pu K, Mei J, Jokerst JV, Hong G, Antaris AL, Chattopadhyay N, et al. Diketopyrrolopyrrole-based semiconducting polymer nanoparticles for in vivo photoacoustic imaging. Adv Mater. 2015;27(35):5184–90. https://doi.org/10.1002/adma.201502285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Banziger SD, Clendening RA, Oxley BM, Ren T. Spectroelectrochemical and computational analysis of a series of cycloaddition-retroelectrocyclization-derived donor-acceptor chromophores. J Phys Chem B. 2020;124(52):11901–9. https://doi.org/10.1021/acs.jpcb.0c09450.

    Article  CAS  PubMed  Google Scholar 

  61. Zheng N, Zhang Z, Kuang J, Wang C, Zheng Y, Lu Q, et al. Poly(photosensitizer) Nanoparticles for enhanced in vivo photodynamic therapy by interrupting the pi-pi stacking and extending circulation time. ACS Appl Mater Interfaces. 2019;11(20):18224–32. https://doi.org/10.1021/acsami.9b04351.

    Article  CAS  PubMed  Google Scholar 

  62. Chaturvedi VK, Singh A, Singh VK, Singh MP. Cancer Nanotechnology: a new revolution for cancer diagnosis and therapy. Curr Drug Metab. 2019;20(6):416–29. https://doi.org/10.2174/1389200219666180918111528.

    Article  CAS  PubMed  Google Scholar 

  63. Guo R, Wang S, Zhao L, Zong Q, Li T, Ling G et al. Engineered nanomaterials for synergistic photo-immunotherapy. Biomaterials. 2022;282:121425 https://doi.org/10.1016/j.biomaterials.2022.121425.

  64. Toftegaard R, Arnbjerg J, Daasbjerg K, Ogilby PR, Dmitriev A, Sutherland DS, et al. Metal-enhanced 1270 nm singlet oxygen phosphorescence. Angew Chem Int Ed Engl. 2008;47(32):6025–7. https://doi.org/10.1002/anie.200800755.

    Article  CAS  PubMed  Google Scholar 

  65. Hu S, Jiang Y, Wu Y, Guo X, Ying Y, Wen Y, et al. Enzyme-free tandem reaction strategy for surface-enhanced raman scattering detection of glucose by using the composite of au nanoparticles and porphyrin-based metal-organic framework. ACS Appl Mater Interfaces. 2020;12(49):55324–30. https://doi.org/10.1021/acsami.0c12988.

    Article  CAS  PubMed  Google Scholar 

  66. Karolin J, Geddes CD. Metal-enhanced fluorescence based excitation volumetric effect of plasmon-enhanced singlet oxygen and super oxide generation. Phys Chem Chem Phys. 2013;15(38):15740–5. https://doi.org/10.1039/c3cp50950h.

    Article  CAS  PubMed  Google Scholar 

  67. Ferreira DC, Monteiro CS, Chaves CR, Safar GAM, Moreira RL, Pinheiro MVB, et al. Hybrid systems based on gold nanostructures and porphyrins as promising photosensitizers for photodynamic therapy. Colloids Surf B Biointerfaces. 2017;150:297–307. https://doi.org/10.1016/j.colsurfb.2016.10.042.

    Article  CAS  PubMed  Google Scholar 

  68. Zhong Y, Zhang X, Yang L, Liang F, Zhang J, Jiang Y et al. Hierarchical dual-responsive cleavable nanosystem for synergetic photodynamic/photothermal therapy against melanoma. Mater Sci Eng C Mater Biol Appl. 2021;131:112524 https://doi.org/10.1016/j.msec.2021.112524.

  69. Yang Y, Hu Y, Du H, Ren L, Wang H. Colloidal plasmonic gold nanoparticles and gold nanorings: shape-dependent generation of singlet oxygen and their performance in enhanced photodynamic cancer therapy. Int J Nanomedicine. 2018;13:2065–78. https://doi.org/10.2147/IJN.S156347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Duman FD, Sebek M, Thanh NTK, Loizidou M, Shakib K, MacRobert AJ. Enhanced photodynamic therapy and fluorescence imaging using gold nanorods for porphyrin delivery in a novel in vitro squamous cell carcinoma 3D model. J Mater Chem B. 2020;8(23):5131–5142. https://doi.org/10.1039/d0tb00810a. The loading of TMPyP onto the Au NRs increases the absorption and emission intensity of the photosensitizer, which promotes the generation of 1O2.

  71. Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small. 2009;5(6):701–8. https://doi.org/10.1002/smll.200801546.

    Article  CAS  PubMed  Google Scholar 

  72. Cheung KL, Chen H, Chen Q, Wang J, Ho HP, Wong CK, et al. CTAB-coated gold nanorods elicit allergic response through degranulation and cell death in human basophils. Nanoscale. 2012;4(15):4447–9. https://doi.org/10.1039/c2nr30435j.

    Article  CAS  PubMed  Google Scholar 

  73. Kaman O, Pollert E, Veverka P, Veverka M, Hadova E, Knizek K, et al. Silica encapsulated manganese perovskite nanoparticles for magnetically induced hyperthermia without the risk of overheating. Nanotechnology. 2009;20(27):275610. https://doi.org/10.1088/0957-4484/20/27/275610.

    Article  CAS  PubMed  Google Scholar 

  74. Qian KK, Bogner RH. Application of mesoporous silicon dioxide and silicate in oral amorphous drug delivery systems. J Pharm Sci. 2012;101(2):444–63. https://doi.org/10.1002/jps.22779.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang S, Lv H, Zhao J, Cheng M, S S. Synthesis of porphyrin-conjugated silica-coated Au nanorods for synergistic photothermal therapy and photodynamic therapy of tumor. Nanotechnology. 2019;30(26):265102. https://doi.org/10.1088/1361-6528/ab0bd1.

    Article  CAS  PubMed  Google Scholar 

  76. Li Z, Ye E, David Lakshminarayanan R, Loh XJ. Recent advances of using hybrid nanocarriers in remotely controlled therapeutic delivery. Small. 2016;12(35):4782–806. https://doi.org/10.1002/smll.201601129.

    Article  CAS  PubMed  Google Scholar 

  77. Lebepe TC, Parani S, Ncapayi V, Maluleke R, Mbaz GIM, Fanoro OT et al. Graphene Oxide-Gold Nanorods Nanocomposite-Porphyrin Conjugate as Promising Tool for Cancer Phototherapy Performance. Pharmaceuticals (Basel). 2021;14(12):1295. https://doi.org/10.3390/ph14121295.The photodynamic efficiency of graphene-based Au NRs was improved along with reduced cytotoxicity.

  78. Robinson JT, Tabakman SM, Liang Y, Wang H, Casalongue HS, Vinh D, et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc. 2011;133(17):6825–31. https://doi.org/10.1021/ja2010175.

    Article  CAS  PubMed  Google Scholar 

  79. Kazemzadeh H, Mozafari M. Fullerene-based delivery systems. Drug Discov Today. 2019;24(3):898–905. https://doi.org/10.1016/j.drudis.2019.01.013.

    Article  CAS  PubMed  Google Scholar 

  80. Alipour E, Alimohammady F, Yumashev A, Maseleno A. Fullerene C60 containing porphyrin-like metal center as drug delivery system for ibuprofen drug. J Mol Model. 2019;26(1):7. https://doi.org/10.1007/s00894-019-4267-1.

    Article  CAS  PubMed  Google Scholar 

  81. Zhen M, Zheng J, Ye L, Li S, Jin C, Li K, et al. Maximizing the relaxivity of Gd-complex by synergistic effect of HSA and carboxylfullerene. ACS Appl Mater Interfaces. 2012;4(7):3724–9. https://doi.org/10.1021/am300817z.

    Article  CAS  PubMed  Google Scholar 

  82. Gunduz EO, Gedik ME, Gunaydin G, Okutan E. Amphiphilic Fullerene-BODIPY Photosensitizers for Targeted Photodynamic Therapy. ChemMedChem. 2022;17(6):e202100693. https://doi.org/10.1002/cmdc.202100693.

    Article  CAS  PubMed  Google Scholar 

  83. Shi J, Yu X, Wang L, Liu Y, Gao J, Zhang J, et al. PEGylated fullerene/iron oxide nanocomposites for photodynamic therapy, targeted drug delivery and MR imaging. Biomaterials. 2013;34(37):9666–77. https://doi.org/10.1016/j.biomaterials.2013.08.049.

    Article  CAS  PubMed  Google Scholar 

  84. Huang Y, Qiu F, Chen R, Yan D, Zhu X. Fluorescence resonance energy transfer-based drug delivery systems for enhanced photodynamic therapy. J Mater Chem B. 2020;8(17):3772–88. https://doi.org/10.1039/d0tb00262c.

    Article  CAS  PubMed  Google Scholar 

  85. Cao H, Yang Y, Qi Y, Li Y, Sun B, Li Y, et al. Intraparticle FRET for Enhanced Efficiency of Two-Photon Activated Photodynamic Therapy. Adv Healthc Mater. 2018;7(12):e1701357. https://doi.org/10.1002/adhm.201701357.

    Article  CAS  PubMed  Google Scholar 

  86. Li S, Chang K, Sun K, Tang Y, Cui N, Wang Y, et al. Amplified Singlet Oxygen Generation in Semiconductor Polymer Dots for Photodynamic Cancer Therapy. ACS Appl Mater Interfaces. 2016;8(6):3624–34. https://doi.org/10.1021/acsami.5b07995.

    Article  CAS  PubMed  Google Scholar 

  87. Jing H, Magdaong NCM, Diers JR, Kirmaier C, Bocian DF, Holten D, et al. Dyads with tunable near-infrared donor-acceptor excited-state energy gaps: molecular design and Forster analysis for ultrafast energy transfer. Phys Chem Chem Phys. 2023;25(3):1827–47. https://doi.org/10.1039/d2cp04689j.

    Article  CAS  PubMed  Google Scholar 

  88. Wang S, Bohnsack M, Megow S, Renth F, Temps F. Ultrafast excitation energy transfer in a benzimidazole-naphthopyran donor-acceptor dyad. Phys Chem Chem Phys. 2019;21(4):2080–92. https://doi.org/10.1039/c8cp05054f.

    Article  CAS  PubMed  Google Scholar 

  89. Chang K, Tang Y, Fang X, Yin S, Xu H, Wu C. Incorporation of Porphyrin to pi-Conjugated Backbone for Polymer-Dot-Sensitized Photodynamic Therapy. Biomacromol. 2016;17(6):2128–36. https://doi.org/10.1021/acs.biomac.6b00356.

    Article  CAS  Google Scholar 

  90. Zhou X, Liang H, Jiang P, Zhang KY, Liu S, Yang T, et al. Multifunctional Phosphorescent Conjugated Polymer Dots for Hypoxia Imaging and Photodynamic Therapy of Cancer Cells. Adv Sci (Weinh). 2016;3(2):1500155. https://doi.org/10.1002/advs.201500155.

    Article  CAS  PubMed  Google Scholar 

  91. Wang B, Queenan BN, Wang S, Nilsson KPR, Bazan GC. Precisely Defined Conjugated Oligoelectrolytes for Biosensing and Therapeutics. Adv Mater. 2019;31(22):e1806701. https://doi.org/10.1002/adma.201806701.

    Article  CAS  PubMed  Google Scholar 

  92. Zhao Y, Zhang Z, Lu Z, Wang H, Tang Y. Enhanced Energy Transfer in a Donor-Acceptor Photosensitizer Triggers Efficient Photodynamic Therapy. ACS Appl Mater Interfaces. 2019;11(42):38467–74. https://doi.org/10.1021/acsami.9b12375.

    Article  CAS  PubMed  Google Scholar 

  93. Han G, Li G, Huang J, Han C, Turro C, Sun Y. Two-photon-absorbing ruthenium complexes enable near infrared light-driven photocatalysis. Nat Commun. 2022;13(1):2288. https://doi.org/10.1038/s41467-022-29981-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Robbins E, Deska R, Slusarek K, Dudek M, Samoc M, Latos-Grazynski L, et al. Two-photon absorption of 28-hetero-2,7-naphthiporphyrins: expanded carbaporphyrinoid macrocycles. RSC Adv. 2022;12(30):19554–60. https://doi.org/10.1039/d2ra03167a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ando S, Isozaki T, Xu YZ, Suzuki T. Simultaneous Two-Photon Absorption of the Thioguanosine Analogue 2’,3’,5’-Tri-O-acetyl-6,8-dithioguanosine with Its Potential Application to Photodynamic Therapy. J Phys Chem A. 2020;124(35):7024–30. https://doi.org/10.1021/acs.jpca.0c03747.

    Article  CAS  PubMed  Google Scholar 

  96. Kim S, Ohulchanskyy TY, Pudavar HE, Pandey RK, Prasad PN. Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J Am Chem Soc. 2007;129(9):2669–75. https://doi.org/10.1021/ja0680257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hammerer F, Poyer F, Fourmois L, Chen S, Garcia G, Teulade-Fichou MP, et al. Mitochondria-targeted cationic porphyrin-triphenylamine hybrids for enhanced two-photon photodynamic therapy. Bioorg Med Chem. 2018;26(1):107–18. https://doi.org/10.1016/j.bmc.2017.11.024.

    Article  CAS  PubMed  Google Scholar 

  98. Kuo WS, Yeh TS, Chang CY, Liu JC, Chen CH, So EC, et al. Amino-Functionalized Nitrogen-Doped Graphene Quantum Dots for Efficient Enhancement of Two-Photon-Excitation Photodynamic Therapy: Functionalized Nitrogen as a Bactericidal and Contrast Agent. Int J Nanomedicine. 2020;15:6961–73. https://doi.org/10.2147/IJN.S242892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kuo WS, Shao YT, Huang KS, Chou TM, Yang CH. Antimicrobial Amino-Functionalized Nitrogen-Doped Graphene Quantum Dots for Eliminating Multidrug-Resistant Species in Dual-Modality Photodynamic Therapy and Bioimaging under Two-Photon Excitation. ACS Appl Mater Interfaces. 2018;10(17):14438–46. https://doi.org/10.1021/acsami.8b01429.

    Article  CAS  PubMed  Google Scholar 

  100. Chou KL, Won N, Kwag J, Kim S, Chen JY. Femto-second laser beam with a low power density achieved a two-photon photodynamic cancer therapy with quantum dots. J Mater Chem B. 2013;1(36):4584–92. https://doi.org/10.1039/c3tb20928h.

    Article  CAS  PubMed  Google Scholar 

  101. Fowley C, Nomikou N, McHale AP, McCaughan B, Callan JF. Extending the tissue penetration capability of conventional photosensitisers: a carbon quantum dot-protoporphyrin IX conjugate for use in two-photon excited photodynamic therapy. Chem Commun (Camb). 2013;49(79):8934–6. https://doi.org/10.1039/c3cc45181j.

    Article  CAS  PubMed  Google Scholar 

  102. Guo C, Xia Y, Niu P, Jiang L, Duan J, Yu Y, et al. Silica nanoparticles induce oxidative stress, inflammation, and endothelial dysfunction in vitro via activation of the MAPK/Nrf2 pathway and nuclear factor-kappaB signaling. Int J Nanomedicine. 2015;10:1463–77. https://doi.org/10.2147/IJN.S76114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yu J, Rong Y, Kuo CT, Zhou XH, Chiu DT. Recent advances in the development of highly luminescent semiconducting polymer dots and nanoparticles for biological imaging and medicine. Anal Chem. 2017;89(1):42–56. https://doi.org/10.1021/acs.analchem.6b04672.

    Article  CAS  PubMed  Google Scholar 

  104. Zhu T, Shi L, Yu C, Dong Y, Qiu F, Shen L, et al. Ferroptosis promotes photodynamic therapy: supramolecular photosensitizer-inducer nanodrug for enhanced cancer treatment. Theranostics. 2019;9(11):3293–307. https://doi.org/10.7150/thno.32867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang D, Zhao T, Zhu X, Yan D, Wang W. Bioapplications of hyperbranched polymers. Chem Soc Rev. 2015;44(12):4023–71. https://doi.org/10.1039/c4cs00229f.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Hunan Province’s Students Innovation and Entrepreneurship Training Program (Xiangjiaotong [2022] 174–3149) and Scientific Research Program of Hunan Health Commission in 2019 (B2019113).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by Zejie Tian, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yunmei Liu PhD.

Ethics declarations

Conflict of Interests

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Z., Li, H., Liu, Z. et al. Enhanced Photodynamic Therapy by Improved Light Energy Capture Efficiency of Porphyrin Photosensitizers. Curr. Treat. Options in Oncol. 24, 1274–1292 (2023). https://doi.org/10.1007/s11864-023-01120-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-023-01120-0

Keywords

Navigation