Skip to main content

Advertisement

Log in

The Role of PARP Inhibitors in Patients with Primary Malignant Central Nervous System Tumors

  • Neuro-oncology (GJ Lesser, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Primary malignant central nervous (CNS) tumors are a devastating group of diseases with urgent need for improved treatment options. Surgery, radiation, and cytotoxic chemotherapy remain the primary standard treatment modalities, with molecularly targeted therapies having proven efficacy in only small subsets of cases. Poly(ADP-ribose) polymerase (PARP) inhibitors, which have had immense success in the treatment of extracranial cancers with homologous recombination deficiency (HRD), are emerging as a potential targeted treatment for various CNS tumors. Although few primary CNS tumors display canonical BRCA gene defects, preclinical evidence suggests that PARP inhibitors may benefit certain CNS tumors with functional HRD or elevated replication stress. In addition, other preclinical studies indicate that PARP inhibitors may synergize with standard therapies used for CNS tumors including radiation and alkylating agents and may prevent or overcome drug resistance. Thus far, initial clinical trials with early-generation PARP inhibitors, typically as monotherapy or in the absence of selective biomarkers, have shown limited efficacy. However, the scientific rationale remains promising, and many clinical trials are ongoing, including investigations of more CNS penetrant or more potent inhibitors and of combination therapy with immune checkpoint inhibitors. Early phase trials are also critically focusing on determining active drug CNS penetration and identifying biomarkers of therapy response. In this review, we will discuss the preclinical evidence supporting use of PARP inhibitors in primary CNS tumors and clinical trial results to date, highlighting ongoing trials and future directions in the field that may yield important findings and potentially impact the treatment of these devastating malignancies in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Miller KD, Ostrom QT, Kruchko C, Patil N, Tihan T, Cioffi G, et al. Brain and other central nervous system tumor statistics, 2021. CA Cancer J Clin. 2021;71(5):381–406. https://doi.org/10.3322/caac.21693.

    Article  PubMed  Google Scholar 

  2. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021;23(8):1231–51. https://doi.org/10.1093/neuonc/noab106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96. https://doi.org/10.1056/NEJMoa043330.

    Article  PubMed  CAS  Google Scholar 

  4. Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA. 2017;318(23):2306–16. https://doi.org/10.1001/jama.2017.18718.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360(8):765–73. https://doi.org/10.1056/NEJMoa0808710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Srikanthan D, Taccone MS, Van Ommeren R, Ishida J, Krumholtz SL, Rutka JT. Diffuse intrinsic pontine glioma: current insights and future directions. Chin Neurosurg J. 2021;7(1):6. https://doi.org/10.1186/s41016-020-00218-w.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chatwin HV, Cruz Cruz J, Green AL. Pediatric high-grade glioma: moving toward subtype-specific multimodal therapy. FEBS J. 2021;288(21):6127–41. https://doi.org/10.1111/febs.15739.

    Article  PubMed  CAS  Google Scholar 

  8. Low JT, Ostrom QT, Cioffi G, Neff C, Waite KA, Kruchko C, et al. Primary brain and other central nervous system tumors in the United States (2014-2018): a summary of the CBTRUS statistical report for clinicians. Neurooncol Pract. 2022;9(3):165–82. https://doi.org/10.1093/nop/npac015.

    Article  PubMed  Google Scholar 

  9. Richard IA, Burgess JT, O’Byrne KJ, Bolderson E. Beyond PARP1: the potential of other members of the poly (ADP-ribose) polymerase family in DNA repair and cancer therapeutics. Front Cell Dev Biol. 2021;9:801200. https://doi.org/10.3389/fcell.2021.801200.

    Article  PubMed  Google Scholar 

  10. Ray Chaudhuri A, Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 2017;18(10):610–21. https://doi.org/10.1038/nrm.2017.53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434(7035):913–7. https://doi.org/10.1038/nature03443.

    Article  PubMed  CAS  Google Scholar 

  12. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–21. https://doi.org/10.1038/nature03445.

    Article  PubMed  CAS  Google Scholar 

  13. Murai J, Huang SY, Das BB, Renaud A, Zhang Y, Doroshow JH, et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 2012;72(21):5588–99. https://doi.org/10.1158/0008-5472.CAN-12-2753.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Pommier Y, O’Connor MJ, de Bono J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci Transl Med. 2016;8(362):362ps17. https://doi.org/10.1126/scitranslmed.aaf9246.

  15. Chen HD, Chen CH, Wang YT, Guo N, Tian YN, Huan XJ, et al. Increased PARP1-DNA binding due to autoPARylation inhibition of PARP1 on DNA rather than PARP1-DNA trapping is correlated with PARP1 inhibitor’s cytotoxicity. Int J Cancer. 2019;145(3):714–27. https://doi.org/10.1002/ijc.32131.

    Article  PubMed  CAS  Google Scholar 

  16. Hopkins TA, Shi Y, Rodriguez LE, Solomon LR, Donawho CK, DiGiammarino EL, et al. Mechanistic dissection of PARP1 trapping and the impact on in vivo tolerability and efficacy of PARP inhibitors. Mol Cancer Res. 2015;13(11):1465–77. https://doi.org/10.1158/1541-7786.MCR-15-0191-T.

    Article  PubMed  CAS  Google Scholar 

  17. Zandarashvili L, Langelier MF, Velagapudi UK, Hancock MA, Steffen JD, Billur R, et al. Structural basis for allosteric PARP-1 retention on DNA breaks. Science. 2020;368(6486). https://doi.org/10.1126/science.aax6367.

  18. Cong K, Peng M, Kousholt AN, Lee WTC, Lee S, Nayak S, et al. Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency. Mol Cell. 2021;81(15):3128–44 e7. https://doi.org/10.1016/j.molcel.2021.06.011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hanzlikova H, Kalasova I, Demin AA, Pennicott LE, Cihlarova Z, Caldecott KW. The importance of poly(ADP-ribose) polymerase as a sensor of unligated Okazaki fragments during DNA replication. Mol Cell. 2018;71(2):319–31 e3. https://doi.org/10.1016/j.molcel.2018.06.004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Maya-Mendoza A, Moudry P, Merchut-Maya JM, Lee M, Strauss R, Bartek J. High speed of fork progression induces DNA replication stress and genomic instability. Nature. 2018;559(7713):279-84. https://doi.org/10.1038/s41586-018-0261-5.

  21. Panzarino NJ, Krais JJ, Cong K, Peng M, Mosqueda M, Nayak SU, et al. Replication gaps underlie BRCA deficiency and therapy response. Cancer Res. 2021;81(5):1388-97. https://doi.org/10.1158/0008-5472.CAN-20-1602.

  22. Vaitsiankova A, Burdova K, Sobol M, Gautam A, Benada O, Hanzlikova H, et al. PARP inhibition impedes the maturation of nascent DNA strands during DNA replication. Nat Struct Mol Biol. 2022;29(4):329-38. https://doi.org/10.1038/s41594-022-00747-1.

  23. Simoneau A, Xiong R, Zou L. The trans cell cycle effects of PARP inhibitors underlie their selectivity toward BRCA1/2-deficient cells. Genes Dev. 2021;35(17-18):1271–89. https://doi.org/10.1101/gad.348479.121.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sokol ES, Pavlick D, Khiabanian H, Frampton GM, Ross JS, Gregg JP, et al. Pan-cancer analysis of BRCA1 and BRCA2 genomic alterations and their association with genomic instability as measured by genome-wide loss of heterozygosity. JCO Precis Oncol. 2020;4:442–65. https://doi.org/10.1200/po.19.00345.

    Article  PubMed  Google Scholar 

  25. Lord CJ, Ashworth A. BRCAness revisited. Nat Rev Cancer. 2016;16(2):110–20. https://doi.org/10.1038/nrc.2015.21.

    Article  PubMed  CAS  Google Scholar 

  26. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462(7274):739–44. https://doi.org/10.1038/nature08617.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19(1):17–30. https://doi.org/10.1016/j.ccr.2010.12.014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Chowdhury R, Yeoh KK, Tian YM, Hillringhaus L, Bagg EA, Rose NR, et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep. 2011;12(5):463–9. https://doi.org/10.1038/embor.2011.43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012;483(7390):474–8. https://doi.org/10.1038/nature10860.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Turcan S, Makarov V, Taranda J, Wang Y, Fabius AWM, Wu W, et al. Mutant-IDH1-dependent chromatin state reprogramming, reversibility, and persistence. Nat Genet. 2018;50(1):62–72. https://doi.org/10.1038/s41588-017-0001-z.

    Article  PubMed  Google Scholar 

  31. Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483(7390):479–83. https://doi.org/10.1038/nature10866.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Sulkowski PL, Corso CD, Robinson ND, Scanlon SE, Purshouse KR, Bai H, et al. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci Transl Med. 2017;9(375):eaal2463. https://doi.org/10.1126/scitranslmed.aal2463.

  33. Sulkowski PL, Oeck S, Dow J, Economos NG, Mirfakhraie L, Liu Y, et al. Oncometabolites suppress DNA repair by disrupting local chromatin signalling. Nature. 2020;582(7813):586-91. https://doi.org/10.1038/s41586-020-2363-0. Described the mechanism by which 2-hydroxyglutarate produced by IDH1/2-mutant cells suppresses homologous recombination and leads to PARP inhibitor sensitivity, underlying the basis of multiple clinical trials testing PARP inhibitors in IDH1/2-mutant glioma.

  34. Antin C, Tauziede-Espariat A, Debily MA, Castel D, Grill J, Pages M, et al. EZHIP is a specific diagnostic biomarker for posterior fossa ependymomas, group PFA and diffuse midline gliomas H3-WT with EZHIP overexpression. Acta Neuropathol Commun. 2020;8(1):183. https://doi.org/10.1186/s40478-020-01056-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Castel D, Kergrohen T, Tauziede-Espariat A, Mackay A, Ghermaoui S, Lechapt E, et al. Histone H3 wild-type DIPG/DMG overexpressing EZHIP extend the spectrum diffuse midline gliomas with PRC2 inhibition beyond H3-K27M mutation. Acta Neuropathol. 2020;139(6):1109–13. https://doi.org/10.1007/s00401-020-02142-w.

    Article  PubMed  Google Scholar 

  36. Hubner JM, Muller T, Papageorgiou DN, Mauermann M, Krijgsveld J, Russell RB, et al. EZHIP/CXorf67 mimics K27M mutated oncohistones and functions as an intrinsic inhibitor of PRC2 function in aggressive posterior fossa ependymoma. Neuro Oncol. 2019;21(7):878–89. https://doi.org/10.1093/neuonc/noz058.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Han J, Yu M, Bai Y, Yu J, Jin F, Li C, et al. Elevated CXorf67 expression in PFA ependymomas suppresses DNA repair and sensitizes to PARP inhibitors. Cancer Cell. 2020;38(6):844-56 e7. https://doi.org/10.1016/j.ccell.2020.10.009. Demonstrated that overexpression of EZHIP suppresses homologous recombination and leads to PARP inhibitor sensitivity, suggesting that PARP inhibitors may be efficacious in subsets of ependymoma and DIPG characterized by EZHIP overexpression.

  38. Garbarino J, Eckroate J, Sundaram RK, Jensen RB, Bindra RS. Loss of ATRX confers DNA repair defects and PARP inhibitor sensitivity. Transl Oncol. 2021;14(9):101147. https://doi.org/10.1016/j.tranon.2021.101147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Northcott PA, Shih DJ, Peacock J, Garzia L, Morrissy AS, Zichner T, et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature. 2012;488(7409):49–56. https://doi.org/10.1038/nature11327.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Di Giulio S, Colicchia V, Pastorino F, Pedretti F, Fabretti F, Nicolis di Robilant V, et al. A combination of PARP and CHK1 inhibitors efficiently antagonizes MYCN-driven tumors. Oncogene. 2021;40(43):6143–52. https://doi.org/10.1038/s41388-021-02003-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Dungey FA, Loser DA, Chalmers AJ. Replication-dependent radiosensitization of human glioma cells by inhibition of poly(ADP-Ribose) polymerase: mechanisms and therapeutic potential. Int J Radiat Oncol Biol Phys. 2008;72(4):1188–97. https://doi.org/10.1016/j.ijrobp.2008.07.031.

    Article  PubMed  CAS  Google Scholar 

  42. Buck J, Dyer PJC, Hii H, Carline B, Kuchibhotla M, Byrne J, et al. Veliparib is an effective radiosensitizing agent in a preclinical model of medulloblastoma. Front Mol Biosci. 2021;8:633344. https://doi.org/10.3389/fmolb.2021.633344.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Chornenkyy Y, Agnihotri S, Yu M, Buczkowicz P, Rakopoulos P, Golbourn B, et al. Poly-ADP-ribose polymerase as a therapeutic target in pediatric diffuse intrinsic pontine glioma and pediatric high-grade astrocytoma. Mol Cancer Ther. 2015;14(11):2560–8. https://doi.org/10.1158/1535-7163.MCT-15-0282.

    Article  PubMed  CAS  Google Scholar 

  44. Jue TR, Nozue K, Lester AJ, Joshi S, Schroder LB, Whittaker SP, et al. Veliparib in combination with radiotherapy for the treatment of MGMT unmethylated glioblastoma. J Transl Med. 2017;15(1):61. https://doi.org/10.1186/s12967-017-1164-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Russo AL, Kwon HC, Burgan WE, Carter D, Beam K, Weizheng X, et al. In vitro and in vivo radiosensitization of glioblastoma cells by the poly (ADP-ribose) polymerase inhibitor E7016. Clin Cancer Res. 2009;15(2):607–12. https://doi.org/10.1158/1078-0432.CCR-08-2079.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. van Vuurden DG, Hulleman E, Meijer OL, Wedekind LE, Kool M, Witt H, et al. PARP inhibition sensitizes childhood high grade glioma, medulloblastoma and ependymoma to radiation. Oncotarget. 2011;2(12):984-96. https://doi.org/10.18632/oncotarget.362.

  47. Lesueur P, Chevalier F, Austry JB, Waissi W, Burckel H, Noel G, et al. Poly-(ADP-ribose)-polymerase inhibitors as radiosensitizers: a systematic review of pre-clinical and clinical human studies. Oncotarget. 2017;8(40):69105-24. https://doi.org/10.18632/oncotarget.19079.

  48. Lesueur P, Chevalier F, El-Habr EA, Junier MP, Chneiweiss H, Castera L, et al. Radiosensitization effect of talazoparib, a PARP inhibitor, on glioblastoma stem cells exposed to low and high linear energy transfer radiation. Sci Rep. 2018;8(1):3664. https://doi.org/10.1038/s41598-018-22022-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Venere M, Hamerlik P, Wu Q, Rasmussen RD, Song LA, Vasanji A, et al. Therapeutic targeting of constitutive PARP activation compromises stem cell phenotype and survival of glioblastoma-initiating cells. Cell Death Differ. 2014;21(2):258–69. https://doi.org/10.1038/cdd.2013.136.

    Article  PubMed  CAS  Google Scholar 

  50. Fu D, Calvo JA, Samson LD. Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer. 2012;12(2):104–20. https://doi.org/10.1038/nrc3185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003. https://doi.org/10.1056/NEJMoa043331.

    Article  PubMed  CAS  Google Scholar 

  52. Bell EH, Zhang P, Fisher BJ, Macdonald DR, McElroy JP, Lesser GJ, et al. Association of MGMT promoter methylation status with survival outcomes in patients with high-risk glioma treated with radiotherapy and temozolomide: an analysis from the NRG Oncology/RTOG 0424 Trial. JAMA Oncol. 2018;4(10):1405–9. https://doi.org/10.1001/jamaoncol.2018.1977.

    Article  PubMed  Google Scholar 

  53. Cahill DP, Codd PJ, Batchelor TT, Curry WT, Louis DN. MSH6 inactivation and emergent temozolomide resistance in human glioblastomas. Clin Neurosurg. 2008;55:165–71.

    PubMed  Google Scholar 

  54. Cahill DP, Levine KK, Betensky RA, Codd PJ, Romany CA, Reavie LB, et al. Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin Cancer Res. 2007;13(7):2038–45. https://doi.org/10.1158/1078-0432.CCR-06-2149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Yip S, Miao J, Cahill DP, Iafrate AJ, Aldape K, Nutt CL, et al. MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance. Clin Cancer Res. 2009;15(14):4622–9. https://doi.org/10.1158/1078-0432.CCR-08-3012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Yoshimoto K, Mizoguchi M, Hata N, Murata H, Hatae R, Amano T, et al. Complex DNA repair pathways as possible therapeutic targets to overcome temozolomide resistance in glioblastoma. Front Oncol. 2012;2:186. https://doi.org/10.3389/fonc.2012.00186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Yu Y, Villanueva-Meyer J, Grimmer MR, Hilz S, Solomon DA, Choi S, et al. Temozolomide-induced hypermutation is associated with distant recurrence and reduced survival after high-grade transformation of low-grade IDH-mutant gliomas. Neuro Oncol. 2021;23(11):1872–84. https://doi.org/10.1093/neuonc/noab081.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Curtin NJ, Wang LZ, Yiakouvaki A, Kyle S, Arris CA, Canan-Koch S, et al. Novel poly(ADP-ribose) polymerase-1 inhibitor, AG14361, restores sensitivity to temozolomide in mismatch repair-deficient cells. Clin Cancer Res. 2004;10(3):881–9. https://doi.org/10.1158/1078-0432.ccr-1144-3.

    Article  PubMed  CAS  Google Scholar 

  59. Wu S, Li X, Gao F, de Groot JF, Koul D, Yung WKA. PARP-mediated PARylation of MGMT is critical to promote repair of temozolomide-induced O6-methylguanine DNA damage in glioblastoma. Neuro Oncol. 2021;23(6):920–31. https://doi.org/10.1093/neuonc/noab003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Higuchi F, Nagashima H, Ning J, Koerner MVA, Wakimoto H, Cahill DP. Restoration of temozolomide sensitivity by PARP inhibitors in mismatch repair deficient glioblastoma is independent of base excision repair. Clin Cancer Res. 2020;26(7):1690–9. https://doi.org/10.1158/1078-0432.CCR-19-2000.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Daniel RA, Rozanska AL, Mulligan EA, Drew Y, Thomas HD, Castelbuono DJ, et al. Central nervous system penetration and enhancement of temozolomide activity in childhood medulloblastoma models by poly(ADP-ribose) polymerase inhibitor AG-014699. Br J Cancer. 2010;103(10):1588–96. https://doi.org/10.1038/sj.bjc.6605946.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Murai J, Zhang Y, Morris J, Ji J, Takeda S, Doroshow JH, et al. Rationale for poly(ADP-ribose) polymerase (PARP) inhibitors in combination therapy with camptothecins or temozolomide based on PARP trapping versus catalytic inhibition. J Pharmacol Exp Ther. 2014;349(3):408–16. https://doi.org/10.1124/jpet.113.210146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Yuan AL, Ricks CB, Bohm AK, Lun X, Maxwell L, Safdar S, et al. ABT-888 restores sensitivity in temozolomide resistant glioma cells and xenografts. PLoS ONE. 2018;13(8):e0202860. https://doi.org/10.1371/journal.pone.0202860.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Clarke MJ, Mulligan EA, Grogan PT, Mladek AC, Carlson BL, Schroeder MA, et al. Effective sensitization of temozolomide by ABT-888 is lost with development of temozolomide resistance in glioblastoma xenograft lines. Mol Cancer Ther. 2009;8(2):407–14. https://doi.org/10.1158/1535-7163.MCT-08-0854.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Gupta SK, Mladek AC, Carlson BL, Boakye-Agyeman F, Bakken KK, Kizilbash SH, et al. Discordant in vitro and in vivo chemopotentiating effects of the PARP inhibitor veliparib in temozolomide-sensitive versus -resistant glioblastoma multiforme xenografts. Clin Cancer Res. 2014;20(14):3730–41. https://doi.org/10.1158/1078-0432.CCR-13-3446.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Gupta SK, Kizilbash SH, Carlson BL, Mladek AC, Boakye-Agyeman F, Bakken KK, et al. Delineation of MGMT hypermethylation as a biomarker for veliparib-mediated temozolomide-sensitizing therapy of glioblastoma. J Natl Cancer Inst. 2016;108(5). https://doi.org/10.1093/jnci/djv369.

  67. Yuan AL, Meode M, Tan M, Maxwell L, Bering EA, Pedersen H, et al. PARP inhibition suppresses the emergence of temozolomide resistance in a model system. J Neurooncol. 2020;148(3):463–72. https://doi.org/10.1007/s11060-020-03561-1.

    Article  PubMed  CAS  Google Scholar 

  68. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350–5. https://doi.org/10.1126/science.aar4060.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, et al. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127(8):2930–40. https://doi.org/10.1172/JCI91190.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lagos GG, Izar B, Rizvi NA. Beyond tumor PD-L1: emerging genomic biomarkers for checkpoint inhibitor immunotherapy. Am Soc Clin Oncol Educ Book. 2020;40:1–11. https://doi.org/10.1200/EDBK_289967.

    Article  PubMed  Google Scholar 

  71. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409–13. https://doi.org/10.1126/science.aan6733.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, et al. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol. 2018;36(7):633–41. https://doi.org/10.1200/JCO.2017.75.3384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. de Groot J, Penas-Prado M, Alfaro-Munoz K, Hunter K, Pei BL, O’Brien B, et al. Window-of-opportunity clinical trial of pembrolizumab in patients with recurrent glioblastoma reveals predominance of immune-suppressive macrophages. Neuro Oncol. 2020;22(4):539–49. https://doi.org/10.1093/neuonc/noz185.

    Article  PubMed  CAS  Google Scholar 

  74. Kelly WJ, Giles AJ, Gilbert M. T lymphocyte-targeted immune checkpoint modulation in glioma. J Immunother Cancer. 2020;8(1). https://doi.org/10.1136/jitc-2019-000379.

  75. Sampson JH, Gunn MD, Fecci PE, Ashley DM. Brain immunology and immunotherapy in brain tumours. Nat Rev Cancer. 2020;20(1):12–25. https://doi.org/10.1038/s41568-019-0224-7.

    Article  PubMed  CAS  Google Scholar 

  76. Lim M, Weller M, Idbaih A, Steinbach J, Finocchiaro G, Raval RR, et al. Phase 3 trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter. Neuro Oncol. 2022. https://doi.org/10.1093/neuonc/noac116.

  77. Omuro A, Brandes AA, Carpentier AF, Idbaih A, Reardon DA, Cloughesy T, et al. Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter: an international randomized phase 3 trial. Neuro Oncol. 2022. https://doi.org/10.1093/neuonc/noac099.

  78. Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R, Aronson M, et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol. 2016;34(19):2206–11. https://doi.org/10.1200/JCO.2016.66.6552.

    Article  PubMed  CAS  Google Scholar 

  79. Das A, Sudhaman S, Morgenstern D, Coblentz A, Chung J, Stone SC, et al. Genomic predictors of response to PD-1 inhibition in children with germline DNA replication repair deficiency. Nat Med. 2022;28(1):125–35. https://doi.org/10.1038/s41591-021-01581-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Bever KM, Le DT. DNA repair defects and implications for immunotherapy. J Clin Invest. 2018;128(10):4236–42. https://doi.org/10.1172/JCI122010.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE, Katibah GE, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 2015;11(7):1018–30. https://doi.org/10.1016/j.celrep.2015.04.031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MY, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity. 2014;41(5):830–42. https://doi.org/10.1016/j.immuni.2014.10.017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Ding L, Kim HJ, Wang Q, Kearns M, Jiang T, Ohlson CE, et al. PARP inhibition elicits STING-dependent antitumor immunity in Brca1-deficient ovarian cancer. Cell Rep. 2018;25(11):2972–80 e5. https://doi.org/10.1016/j.celrep.2018.11.054.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Schadt L, Sparano C, Schweiger NA, Silina K, Cecconi V, Lucchiari G, et al. Cancer-cell-intrinsic cGAS expression mediates tumor immunogenicity. Cell Rep. 2019;29(5):1236–48 e7. https://doi.org/10.1016/j.celrep.2019.09.065.

    Article  PubMed  CAS  Google Scholar 

  85. Stewart RA, Pilie PG, Yap TA. Development of PARP and immune-checkpoint inhibitor combinations. Cancer Res. 2018;78(24):6717–25. https://doi.org/10.1158/0008-5472.CAN-18-2652.

    Article  PubMed  CAS  Google Scholar 

  86. Jiao S, Xia W, Yamaguchi H, Wei Y, Chen MK, Hsu JM, et al. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression. Clin Cancer Res. 2017;23(14):3711–20. https://doi.org/10.1158/1078-0432.CCR-16-3215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Pantelidou C, Sonzogni O, De Oliveria TM, Mehta AK, Kothari A, Wang D, et al. PARP inhibitor efficacy depends on CD8(+) T-cell Recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer. Cancer Discov. 2019;9(6):722–37. https://doi.org/10.1158/2159-8290.CD-18-1218.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Shen J, Zhao W, Ju Z, Wang L, Peng Y, Labrie M, et al. PARPi triggers the STING-dependent immune response and enhances the therapeutic efficacy of immune checkpoint blockade independent of BRCAness. Cancer Res. 2019;79(2):311–9. https://doi.org/10.1158/0008-5472.CAN-18-1003.

    Article  PubMed  CAS  Google Scholar 

  89. Parkes EE, Walker SM, Taggart LE, McCabe N, Knight LA, Wilkinson R, et al. Activation of STING-dependent innate immune signaling by S-phase-specific DNA damage in breast cancer. J Natl Cancer Inst. 2017;109(1). https://doi.org/10.1093/jnci/djw199.

  90. Germano G, Lamba S, Rospo G, Barault L, Magri A, Maione F, et al. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature. 2017;552(7683):116–20. https://doi.org/10.1038/nature24673.

    Article  PubMed  CAS  Google Scholar 

  91. Hodi FS, Wolchok JD, Schadendorf D, Larkin J, Long GV, Qian X, et al. TMB and inflammatory gene expression associated with clinical outcomes following immunotherapy in advanced melanoma. Cancer Immunol Res. 2021;9(10):1202–13. https://doi.org/10.1158/2326-6066.CIR-20-0983.

    Article  PubMed  CAS  Google Scholar 

  92. Lu C, Guan J, Lu S, Jin Q, Rousseau B, Lu T, et al. DNA sensing in mismatch repair-deficient tumor cells is essential for anti-tumor immunity. Cancer Cell. 2021;39(1):96–108 e6. https://doi.org/10.1016/j.ccell.2020.11.006.

    Article  PubMed  CAS  Google Scholar 

  93. Chabanon RM, Muirhead G, Krastev DB, Adam J, Morel D, Garrido M, et al. PARP inhibition enhances tumor cell-intrinsic immunity in ERCC1-deficient non-small cell lung cancer. J Clin Invest. 2019;129(3):1211–28. https://doi.org/10.1172/JCI123319.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Touat M, Li YY, Boynton AN, Spurr LF, Iorgulescu JB, Bohrson CL, et al. Mechanisms and therapeutic implications of hypermutation in gliomas. Nature. 2020;580(7804):517–23. https://doi.org/10.1038/s41586-020-2209-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Zhao J, Chen AX, Gartrell RD, Silverman AM, Aparicio L, Chu T, et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat Med. 2019;25(3):462–9. https://doi.org/10.1038/s41591-019-0349-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Bunse L, Pusch S, Bunse T, Sahm F, Sanghvi K, Friedrich M, et al. Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat Med. 2018;24(8):1192–203. https://doi.org/10.1038/s41591-018-0095-6.

    Article  PubMed  CAS  Google Scholar 

  97. Kohanbash G, Carrera DA, Shrivastav S, Ahn BJ, Jahan N, Mazor T, et al. Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas. J Clin Invest. 2017;127(4):1425–37. https://doi.org/10.1172/JCI90644.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kadiyala P, Carney SV, Gauss JC, Garcia-Fabiani MB, Haase S, Alghamri MS, et al. Inhibition of 2-hydroxyglutarate elicits metabolic reprogramming and mutant IDH1 glioma immunity in mice. J Clin Invest. 2021;131(4). https://doi.org/10.1172/JCI139542.

  99. Murai J, Huang SY, Renaud A, Zhang Y, Ji J, Takeda S, et al. Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol Cancer Ther. 2014;13(2):433–43. https://doi.org/10.1158/1535-7163.MCT-13-0803.

    Article  PubMed  CAS  Google Scholar 

  100. Wang H, Ren B, Liu Y, Jiang B, Guo Y, Wei M, et al. Discovery of pamiparib (BGB-290), a potent and selective poly (ADP-ribose) polymerase (PARP) inhibitor in clinical development. J Med Chem. 2020;63(24):15541–63. https://doi.org/10.1021/acs.jmedchem.0c01346.

    Article  PubMed  CAS  Google Scholar 

  101. Montagnoli A, Papeo G, Rainoldi S, Caprera F, Ciomei M, Felder E, et al. Abstract 4843: NMS-P293, a PARP-1 selective inhibitor with no trapping activity and high CNS penetration, possesses potent in vivo efficacy and represents a novel therapeutic option for brain localized metastases and glioblastoma. Cancer Res. 2018;78(13_Supplement):4843-. https://doi.org/10.1158/1538-7445.Am2018-4843.

  102. Montagnoli A, Rainoldi S, Ciavolella A, Ballinari D, Caprera F, Ceriani L, et al. Abstract 1223: NMS-P293, a novel potent and selective PARP-1 inhibitor with high antitumor efficacy and tolerability. Cancer Res. 2016;76(14_Supplement):1223-. https://doi.org/10.1158/1538-7445.Am2016-1223.

  103. Jamal K, Staniszewska A, Gordon J, Wen S, McGrath F, Dowdell G, et al. Abstract 2609: AZD9574 is a novel, brain penetrant PARP-1 selective inhibitor with activity in an orthotopic, intracranial xenograft model with aberrant DNA repair. Cancer Res. 2022;82(12_Supplement):2609-. https://doi.org/10.1158/1538-7445.Am2022-2609.

  104. Ngoi NYL, Leo E, O’Connor MJ, Yap TA. Development of next-generation poly(ADP-ribose) polymerase 1-selective inhibitors. Cancer J. 2021;27(6):521–8. https://doi.org/10.1097/PPO.0000000000000556.

    Article  PubMed  CAS  Google Scholar 

  105. Hanna C, Kurian KM, Williams K, Watts C, Jackson A, Carruthers R, et al. Pharmacokinetics, safety, and tolerability of olaparib and temozolomide for recurrent glioblastoma: results of the phase I OPARATIC trial. Neuro Oncol. 2020;22(12):1840-50. https://doi.org/10.1093/neuonc/noaa104. Demonstrated that olaparib penetrates the core and margin regions of recurrent glioblastoma at concentrations sufficient for radiosensitization, despite having minimal penetration of an intact blood–brain barrier. Also established a regimen for combination of olaparib with TMZ using reduced-dose olaparib three times per week and continuous low-dose TMZ.

  106. Kizilbash SH, Gupta SK, Chang K, Kawashima R, Parrish KE, Carlson BL, et al. Restricted delivery of talazoparib across the blood-brain barrier limits the sensitizing effects of PARP inhibition on temozolomide therapy in glioblastoma. Mol Cancer Ther. 2017;16(12):2735–46. https://doi.org/10.1158/1535-7163.MCT-17-0365.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Xiong Y, Guo Y, Liu Y, Wang H, Gong W, Liu Y, et al. Pamiparib is a potent and selective PARP inhibitor with unique potential for the treatment of brain tumor. Neoplasia. 2020;22(9):431–40. https://doi.org/10.1016/j.neo.2020.06.009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Li X, Delzer J, Voorman R, de Morais SM, Lao Y. Disposition and drug-drug interaction potential of veliparib (ABT-888), a novel and potent inhibitor of poly(ADP-ribose) polymerase. Drug Metab Dispos. 2011;39(7):1161-9. https://doi.org/10.1124/dmd.110.037820.

  109. Pike A, Balazs A, Cselényi Z, Degorce SL, Ghosh A, Hande SM, et al. Abstract 5076: evaluation of the CNS penetration of a next generation PARP inhibitor, AZD9574, in cynomolgus monkey using positron emission tomography. Cancer Res. 2022;82(12_Supplement):5076-. https://doi.org/10.1158/1538-7445.Am2022-5076.

  110. Ducray F, Sanson M, Chinot OL, Fontanilles M, Rivoirard R, Thomas-Maisonneuve L, et al. Olaparib in recurrent IDH-mutant high-grade glioma (OLAGLI). J Clin Oncol. 2021;39(15_suppl):2007-. https://doi.org/10.1200/JCO.2021.39.15_suppl.2007.

  111. Fanucci K, Pilat MJP, Shah R, Boerner SA, Li J, Durecki DE, et al. Multicenter phase 2 trial of the PARP inhibitor (PARPi) olaparib in recurrent IDH1 and IDH2-mutant contrast-enhancing glioma. J Clin Oncol. 2022;40(16_suppl):2035-. https://doi.org/10.1200/JCO.2022.40.16_suppl.2035.

  112. Schiff D, Bindra R, Li J, Ye X, Ellingson B, Walbert T, et al. CTNI-18. Phase I and preliminary phase 0 results of ABTC 1801: a multi-arm clinical trial of the PARP inhibitor pamiparib (BGB290) with very low dose metronomic temozolomide in recurrent IDH mutant gliomas. Neuro Oncol. 2021;23(Supplement_6):vi63-vi. https://doi.org/10.1093/neuonc/noab196.243. Abstract reporting preliminary results that pamiparib penetrates both enhancing and non-enhancing brain tumors at pharmacologically active concentrations. Also established a regimen for combination of pamiparib and low-dose metronomic TMZ that is under investigation in the phase II study.

  113. Kleinberg L, Supko JG, Mikkelsen T, Blakeley JON, Stevens G, Ye X, et al. Phase I adult brain tumor consortium (ABTC) trial of ABT-888 (veliparib), temozolomide (TMZ), and radiotherapy (RT) for newly diagnosed glioblastoma multiforme (GBM) including pharmacokinetic (PK) data. J Clin Oncol. 2013;31(15_suppl):2065-. https://doi.org/10.1200/jco.2013.31.15_suppl.2065.

  114. Robins HI, Zhang P, Gilbert MR, Chakravarti A, de Groot JF, Grimm SA, et al. A randomized phase I/II study of ABT-888 in combination with temozolomide in recurrent temozolomide resistant glioblastoma: an NRG oncology RTOG group study. J Neurooncol. 2016;126(2):309–16. https://doi.org/10.1007/s11060-015-1966-z.

    Article  PubMed  CAS  Google Scholar 

  115. Sim HW, McDonald KL, Lwin Z, Barnes EH, Rosenthal M, Foote MC, et al. A randomized phase II trial of veliparib, radiotherapy, and temozolomide in patients with unmethylated MGMT glioblastoma: the VERTU study. Neuro Oncol. 2021;23(10):1736-49. https://doi.org/10.1093/neuonc/noab111. A randomized trial which showed that the addition of veliparib to radiotherapy and temozolomide was safe and tolerable, but did not prolong progression-free or overall survival in unmethylated MGMT GBM patients.

  116. Sarkaria JN, Ballman KV, Kizilbash SH, Sulman EP, Giannini C, Mashru SH, et al. Randomized phase II/III trial of veliparib or placebo in combination with adjuvant temozolomide in newly diagnosed glioblastoma (GBM) patients with MGMT promoter hypermethylation (Alliance A071102). J Clin Oncol. 2022;40(16_suppl):2001-. https://doi.org/10.1200/JCO.2022.40.16_suppl.2001. Abstract reporting results of a large randomized controlled trial which showed that the addition of veliparib to adjuvant TMZ did not significantly improve survival in newly diagnosed, MGMT hypermethylated GBM patients. Unplanned exploratory analysis was consistent with potential for veliparib to limit development of TMZ resistance in subset of patients.

  117. Chalmers A, Stobo J, Short SC, Herbert C, Saran F, Morris A, et al. ACTR-22. Results of phase I of the PARADIGM trial: a phase I dose escalation study of olaparib in combination with short course radiotherapy in elderly patients with newly diagnosed glioblastoma (GBM). Neuro Oncol. 2017;19(suppl_6):vi5-vi. https://doi.org/10.1093/neuonc/nox168.017.

  118. Fulton B, Short SC, James A, Nowicki S, McBain C, Jefferies S, et al. PARADIGM-2: Two parallel phase I studies of olaparib and radiotherapy or olaparib and radiotherapy plus temozolomide in patients with newly diagnosed glioblastoma, with treatment stratified by MGMT status. Clin Transl Radiat Oncol. 2018;8:12–6. https://doi.org/10.1016/j.ctro.2017.11.003.

    Article  PubMed  Google Scholar 

  119. Lesueur P, Lequesne J, Grellard JM, Dugue A, Coquan E, Brachet PE, et al. Phase I/IIa study of concomitant radiotherapy with olaparib and temozolomide in unresectable or partially resectable glioblastoma: OLA-TMZ-RTE-01 trial protocol. BMC Cancer. 2019;19(1):198. https://doi.org/10.1186/s12885-019-5413-y.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Piotrowski A, Puduvalli V, Wen P, Campian J, Colman H, Pearlman M, et al. ACTR-39. Pamiparib in combination with radiation therapy (RT) and/or temozolomide (TMZ) in patients with newly diagnosed or recurrent/refractory (R/R) glioblastoma (GBM); phase 1b/2 study update. Neuro Oncol. 2019;21(Supplement_6):vi21-vi2. https://doi.org/10.1093/neuonc/noz175.081.

  121. Piotrowski A, Puduvalli V, Wen P, Colman H, Campian J, Pearlman M, et al. CTNI-38. Pamiparib in combination with radiation therapy (RT) and/or temozolomide (TMZ) in patients with newly diagnosed (ND) or recurrent/refractory (R/R) glioblastoma (GBM); phase 1b/2 study update. Neuro Oncol. 2020;22(Supplement_2):ii51-ii. https://doi.org/10.1093/neuonc/noaa215.205.

  122. Kurzrock R, Galanis E, Johnson DR, Kansra V, Wilcoxen K, Mcclure T, et al. A phase I study of niraparib in combination with temozolomide (TMZ) in patients with advanced cancer. J Clin Oncol. 2014;32(15_suppl):2092-. https://doi.org/10.1200/jco.2014.32.15_suppl.2092.

  123. Domchek S, Postel-Vinay S, Im SA, Park YH, Delord JP, Italiano A, et al. Phase II study of olaparib (O) and durvalumab (D) (MEDIOLA): updated results in patients (pts) with germline BRCA-mutated (gBRCAm) metastatic breast cancer (MBC). Ann Oncol. 2019;30. https://doi.org/10.1093/annonc/mdz253.017.

  124. Drew Y, Kaufman B, Banerjee S, Lortholary A, Hong SH, Park YH, et al. Phase II study of olaparib + durvalumab (MEDIOLA): updated results in germline BRCA-mutated platinum-sensitive relapsed (PSR) ovarian cancer (OC). Ann Oncol. 2019;30:v485–v6. https://doi.org/10.1093/annonc/mdz253.016.

    Article  Google Scholar 

  125. Konstantinopoulos PA, Waggoner S, Vidal GA, Mita M, Moroney JW, Holloway R, et al. Single-arm phases 1 and 2 trial of niraparib in combination with pembrolizumab in patients with recurrent platinum-resistant ovarian carcinoma. JAMA Oncol. 2019;5(8):1141–9. https://doi.org/10.1001/jamaoncol.2019.1048.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Vinayak S, Tolaney SM, Schwartzberg L, Mita M, McCann G, Tan AR, et al. Open-label clinical trial of niraparib combined with pembrolizumab for treatment of advanced or metastatic triple-negative breast cancer. JAMA Oncol. 2019;5(8):1132–40. https://doi.org/10.1001/jamaoncol.2019.1029.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Ramos R, Climans SA, Adile A, Ghiassi P, Baker S, Phillips MJ, et al. Combination olaparib and durvalumab for patients with recurrent IDH-mutated gliomas. J Clin Oncol. 2021;39(15_suppl):e14026-e. https://doi.org/10.1200/JCO.2021.39.15_suppl.e14026.

  128. Su JM, Thompson P, Adesina A, Li XN, Kilburn L, Onar-Thomas A, et al. A phase I trial of veliparib (ABT-888) and temozolomide in children with recurrent CNS tumors: a pediatric brain tumor consortium report. Neuro Oncol. 2014;16(12):1661–8. https://doi.org/10.1093/neuonc/nou103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Baxter PA, Su JM, Onar-Thomas A, Billups CA, Li XN, Poussaint TY, et al. A phase I/II study of veliparib (ABT-888) with radiation and temozolomide in newly diagnosed diffuse pontine glioma: a Pediatric Brain Tumor Consortium study. Neuro Oncol. 2020;22(6):875–85. https://doi.org/10.1093/neuonc/noaa016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Schafer ES, Rau RE, Berg SL, Liu X, Minard CG, Bishop AJR, et al. Phase 1/2 trial of talazoparib in combination with temozolomide in children and adolescents with refractory/recurrent solid tumors including Ewing sarcoma: a Children’s Oncology Group Phase 1 Consortium study (ADVL1411). Pediatr Blood Cancer. 2020;67(2):e28073. https://doi.org/10.1002/pbc.28073.

    Article  PubMed  Google Scholar 

  131. Cai Z, Liu C, Chang C, Shen C, Yin Y, Yin X, et al. Comparative safety and tolerability of approved PARP inhibitors in cancer: a systematic review and network meta-analysis. Pharmacol Res. 2021;172:105808. https://doi.org/10.1016/j.phrs.2021.105808.

    Article  PubMed  CAS  Google Scholar 

  132. Chen EM, Quijano AR, Seo YE, Jackson C, Josowitz AD, Noorbakhsh S, et al. Biodegradable PEG-poly(omega-pentadecalactone-co-p-dioxanone) nanoparticles for enhanced and sustained drug delivery to treat brain tumors. Biomaterials. 2018;178:193–203. https://doi.org/10.1016/j.biomaterials.2018.06.024.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. King AR, Corso CD, Chen EM, Song E, Bongiorni P, Chen Z, et al. Local DNA repair inhibition for sustained radiosensitization of high-grade gliomas. Mol Cancer Ther. 2017;16(8):1456–69. https://doi.org/10.1158/1535-7163.MCT-16-0788.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Vogelbaum MA, Aghi MK. Convection-enhanced delivery for the treatment of glioblastoma. Neuro Oncol. 2015;17 Suppl 2:ii3-ii8. https://doi.org/10.1093/neuonc/nou354.

  135. Sule A, Van Doorn J, Sundaram RK, Ganesa S, Vasquez JC, Bindra RS. Targeting IDH1/2 mutant cancers with combinations of ATR and PARP inhibitors. NAR Cancer. 2021;3(2):zcab018. https://doi.org/10.1093/narcan/zcab018.

  136. Rudolph J, Jung K, Luger K. Inhibitors of PARP: number crunching and structure gazing. Proc Natl Acad Sci U S A. 2022;119(11):e2121979119. https://doi.org/10.1073/pnas.2121979119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Wang L, Yang C, Xie C, Jiang J, Gao M, Fu L, et al. Pharmacologic characterization of fluzoparib, a novel poly(ADP-ribose) polymerase inhibitor undergoing clinical trials. Cancer Sci. 2019;110(3):1064–75. https://doi.org/10.1111/cas.13947.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjit S. Bindra MD, PhD.

Ethics declarations

Conflict of Interest

S. Gueble and J. Vasquez declare that they have no conflicts of interest. R. Bindra reports grants and personal fees from Modifi Bio, outside the submitted work. In addition, R. Bindra has a patent 62/344,678 pending to Yale.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gueble, S.E., Vasquez, J.C. & Bindra, R.S. The Role of PARP Inhibitors in Patients with Primary Malignant Central Nervous System Tumors. Curr. Treat. Options in Oncol. 23, 1566–1589 (2022). https://doi.org/10.1007/s11864-022-01024-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-022-01024-5

Keywords

Navigation