Skip to main content

Advertisement

Log in

Management and Treatment of Non-small Cell Lung Cancer with MET Alteration and Mechanisms of Resistance

  • Lung Cancer (TA Leal and N Sethakorn, Section Editors)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

MET-driven tumors are a heterogenous group of non-small cell lung cancers (NSCLC) with activating mutations. Pathologic activation of MET can be achieved with increased number of gene copies overexpression, or decreased protein degradation through several mechanisms, including mutations, amplifications, or fusions. Besides its role as primary driver, MET activation might also mediate resistance to kinase inhibitors in NSCLC with various other actionable alterations. While checkpoint inhibitors have modest efficacy in MET-driven tumors, several approaches of targeted blockade are available. Among them the most promising are small tyrosine kinase inhibitors, antibody-drug conjugates, and bispecific antibodies. Unfortunately, resistance is virtually inevitable. Resistance to small kinase inhibitors might be mediated by kinase domain mutations or activation of shunting cascades. Various resistance mechanisms might be present in one patient, making it overcoming an unresolved problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Camidge DR, Doebele RC, Kerr KM. Comparing and contrasting predictive biomarkers for immunotherapy and targeted therapy of NSCLC. Nat Rev Clin Oncol. 2019;16(6):341–55.

    Article  CAS  Google Scholar 

  2. Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM, Vande Woude GF. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature. 1984;311(5981):29–33.

    Article  CAS  Google Scholar 

  3. Giordano S, Ponzetto C, Di Renzo MF, Cooper CS, Comoglio PM. Tyrosine kinase receptor indistinguishable from the c-met protein. Nature. 1989;339(6220):155–6.

    Article  CAS  Google Scholar 

  4. Guo R, Luo J, Chang J, Rekhtman N, Arcila M, Drilon A. MET-dependent solid tumours - molecular diagnosis and targeted therapy. Nat Rev Clin Oncol. 2020;17(9):569–87.

    Article  CAS  Google Scholar 

  5. Oxnard GR, Hu Y, Mileham KF, Husain H, Costa DB, Tracy P, Feeney N, Sholl LM, Dahlberg SE, Redig AJ, Kwiatkowski DJ, Rabin MS, Paweletz CP, Thress KS, Janne PA. Assessment of resistance mechanisms and clinical implications in patients with EGFR T790M-positive lung cancer and acquired resistance to osimertinib. JAMA Oncol. 2018;4(11):1527–34.

    Article  Google Scholar 

  6. • Cancer Genome Atlas Research N. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511(7511):543-50. One of the first and most comprehensive efforts in describing lung adenocarcinoma pathogenesis and subtypes.

  7. Paik PK, Drilon A, Fan PD, Yu H, Rekhtman N, Ginsberg MS, Borsu L, Schultz N, Berger MF, Rudin CM, Ladanyi M. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov. 2015;5(8):842–9.

    Article  CAS  Google Scholar 

  8. Park S, Choi YL, Sung CO, An J, Seo J, Ahn MJ, Ahn JS, Park K, Shin YK, Erkin OC, Song K, Kim J, Shim YM, Han J. High MET copy number and MET overexpression: poor outcome in non-small cell lung cancer patients. Histol Histopathol. 2012;27(2):197–207.

    Google Scholar 

  9. Ma PC, Tretiakova MS, MacKinnon AC, Ramnath N, Johnson C, Dietrich S, Seiwert T, Christensen JG, Jagadeeswaran R, Krausz T, Vokes EE, Husain AN, Salgia R. Expression and mutational analysis of MET in human solid cancers. Genes Chromosomes Cancer. 2008;47(12):1025–37.

    Article  CAS  Google Scholar 

  10. Go H, Jeon YK, Park HJ, Sung SW, Seo JW, Chung DH. High MET gene copy number leads to shorter survival in patients with non-small cell lung cancer. J Thorac Oncol. 2010;5(3):305–13.

    Article  Google Scholar 

  11. Kron A, Scheffler M, Heydt C, Ruge L, Schaepers C, Eisert AK, Merkelbach-Bruse S, Riedel R, Nogova L, Fischer RN, Michels S, Abdulla DSY, Koleczko S, Fassunke J, Schultheis AM, Kron F, Ueckeroth F, Wessling G, Sueptitz J, et al. Genetic heterogeneity of MET-Aberrant NSCLC and its impact on the outcome of immunotherapy. J Thorac Oncol. 2021;16(4):572–82.

    Article  CAS  Google Scholar 

  12. •• Schrock AB, Frampton GM, Suh J, Chalmers ZR, Rosenzweig M, Erlich RL, et al. Characterization of 298 patients with lung cancer harboring MET exon 14 skipping alterations. J Thorac Oncol. 2016;11(9):1493-502. The most comprehensive effort to characterize epidemiological features of MET exon 14 mutations cariers.

  13. Tong JH, Yeung SF, Chan AW, Chung LY, Chau SL, Lung RW, Tong CY, Chow C, Tin EK, Yu YH, Li H, Pan Y, Chak WP, Ng CS, Mok TS, To KF. MET amplification and Exon 14 splice site mutation define unique molecular subgroups of non-small cell lung carcinoma with poor prognosis. Clin Cancer Res. 2016;22(12):3048–56.

    Article  CAS  Google Scholar 

  14. Liu X, Jia Y, Stoopler MB, Shen Y, Cheng H, Chen J, Mansukhani M, Koul S, Halmos B, Borczuk AC. Next-generation sequencing of pulmonary sarcomatoid carcinoma reveals high frequency of actionable MET gene mutations. J Clin Oncol. 2016;34(8):794–802.

    Article  CAS  Google Scholar 

  15. Vuong HG, Ho ATN, Altibi AMA, Nakazawa T, Katoh R, Kondo T. Clinicopathological implications of MET exon 14 mutations in non-small cell lung cancer - a systematic review and meta-analysis. Lung Cancer. 2018;123:76–82.

    Article  Google Scholar 

  16. Kwon D, Koh J, Kim S, Go H, Kim YA, Keam B, Kim TM, Kim DW, Jeon YK, Chung DH. MET exon 14 skipping mutation in triple-negative pulmonary adenocarcinomas and pleomorphic carcinomas: an analysis of intratumoral MET status heterogeneity and clinicopathological characteristics. Lung Cancer. 2017;106:131–7.

    Article  Google Scholar 

  17. Awad MM, Oxnard GR, Jackman DM, Savukoski DO, Hall D, Shivdasani P, Heng JC, Dahlberg SE, Janne PA, Verma S, Christensen J, Hammerman PS, Sholl LM. MET Exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-Met overexpression. J Clin Oncol. 2016;34(7):721–30.

    Article  CAS  Google Scholar 

  18. Saito M, Shiraishi K, Kunitoh H, Takenoshita S, Yokota J, Kohno T. Gene aberrations for precision medicine against lung adenocarcinoma . Cancer Sci. 2016;107(6):713-720.

  19. Saffroy R, Fallet V, Girard N, Mazieres J, Sibilot DM, Lantuejoul S, Rouquette I, Thivolet-Bejui F, Vieira T, Antoine M, Cadranel J, Lemoine A, Wislez M. MET exon 14 mutations as targets in routine molecular analysis of primary sarcomatoid carcinoma of the lung. Oncotarget. 2017;8(26):42428–37.

    Article  Google Scholar 

  20. Lee GD, Lee SE, Oh DY, Yu DB, Jeong HM, Kim J, Hong S, Jung HS, Oh E, Song JY, Lee MS, Kim M, Jung K, Kim J, Shin YK, Choi YL, Kim HR. MET Exon 14 skipping mutations in lung adenocarcinoma: clinicopathologic implications and prognostic values. J Thorac Oncol. 2017;12(8):1233–46.

    Article  Google Scholar 

  21. Kim P, Jia P, Zhao Z. Kinase impact assessment in the landscape of fusion genes that retain kinase domains: a pan-cancer study. Brief Bioinform. 2018;19(3):450–60.

    CAS  Google Scholar 

  22. Wang Wx, Xu C, Chen Y, Zhu Y-c, Liu Y, Wang H, Zhuang W, Chen X, Huang Y-j, Lai J, Fang M, Zhang Z, Tao Y, Xu S, Qian X, Zhao H, Cai S, Chen G, Lv T, Song Y. MET gene fusions in non-small cell lung cancer (NSCLC) in the Chinese population: a multicenter study. J Clin Oncol. 2018;36(15_suppl):e13539.

    Article  Google Scholar 

  23. Pan Y, Zhang Y, Ye T, Zhao Y, Gao Z, Yuan H, Zheng D, Zheng S, Li H, Li Y, Jin Y, Sun Y, Chen H. Detection of novel NRG1, EGFR, and MET fusions in lung adenocarcinomas in the Chinese population. J Thorac Oncol. 2019;14(11):2003–8.

    Article  CAS  Google Scholar 

  24. Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, Schnall-Levin M, White J, Sanford EM, An P, Sun J, Juhn F, Brennan K, Iwanik K, Maillet A, Buell J, White E, Zhao M, Balasubramanian S, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013;31(11):1023–31.

    Article  CAS  Google Scholar 

  25. Heyer EE, Deveson IW, Wooi D, Selinger CI, Lyons RJ, Hayes VM, O'Toole SA, Ballinger ML, Gill D, Thomas DM, Mercer R, Blackburn J. Diagnosis of fusion genes using targeted RNA sequencing. Nat Commun. 2019;10(1):1388.

    Article  CAS  Google Scholar 

  26. Ma PC, Jagadeeswaran R, Jagadeesh S, Tretiakova MS, Nallasura V, Fox EA, Hansen M, Schaefer E, Naoki K, Lader A, Richards W, Sugarbaker D, Husain AN, Christensen JG, Salgia R. Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res. 2005;65(4):1479–88.

    Article  CAS  Google Scholar 

  27. Kentsis A, Reed C, Rice KL, Sanda T, Rodig SJ, Tholouli E, Christie A, Valk PJ, Delwel R, Ngo V, Kutok JL, Dahlberg SE, Moreau LA, Byers RJ, Christensen JG, Vande Woude G, Licht JD, Kung AL, Staudt LM, Look AT. Autocrine activation of the MET receptor tyrosine kinase in acute myeloid leukemia. Nat Med. 2012;18(7):1118–22.

    Article  CAS  Google Scholar 

  28. Ma G, Deng Y, Chen W, Liu Z, Ai C, Li X, Zhou Q. The prognostic role of MET protein expression among surgically resected non-small cell lung cancer patients: a meta-analysis. Front Oncol. 2019;9:1441.

    Article  Google Scholar 

  29. Finocchiaro G, Toschi L, Gianoncelli L, Baretti M, Santoro A. Prognostic and predictive value of MET deregulation in non-small cell lung cancer. Ann Transl Med. 2015;3(6):83.

    Google Scholar 

  30. Cappuzzo F, Marchetti A, Skokan M, Rossi E, Gajapathy S, Felicioni L, Del Grammastro M, Sciarrotta MG, Buttitta F, Incarbone M, Toschi L, Finocchiaro G, Destro A, Terracciano L, Roncalli M, Alloisio M, Santoro A, Varella-Garcia M. Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J Clin Oncol. 2009;27(10):1667–74.

    Article  Google Scholar 

  31. Bubendorf L, Dafni U, Schobel M, Finn SP, Tischler V, Sejda A, Marchetti A, Thunnissen E, Verbeken EK, Warth A, Sansano I, Cheney R, Speel EJM, Nonaka D, Monkhorst K, Hager H, Martorell M, Savic S, Kerr KM, et al. Prevalence and clinical association of MET gene overexpression and amplification in patients with NSCLC: Results from the European Thoracic Oncology Platform (ETOP) Lungscape project. Lung Cancer. 2017;111:143–9.

    Article  Google Scholar 

  32. Spigel DR, Ervin TJ, Ramlau RA, Daniel DB, Goldschmidt JH Jr, Blumenschein GR Jr, Krzakowski MJ, Robinet G, Godbert B, Barlesi F, Govindan R, Patel T, Orlov SV, Wertheim MS, Yu W, Zha J, Yauch RL, Patel PH, Phan SC, Peterson AC. Randomized phase II trial of Onartuzumab in combination with erlotinib in patients with advanced non-small-cell lung cancer. J Clin Oncol. 2013;31(32):4105–14.

    Article  CAS  Google Scholar 

  33. Gordon MS, Sweeney CS, Mendelson DS, Eckhardt SG, Anderson A, Beaupre DM, Branstetter D, Burgess TL, Coxon A, Deng H, Kaplan-Lefko P, Leitch IM, Oliner KS, Yan L, Zhu M, Gore L. Safety, pharmacokinetics, and pharmacodynamics of AMG 102, a fully human hepatocyte growth factor-neutralizing monoclonal antibody, in a first-in-human study of patients with advanced solid tumors. Clin Cancer Res. 2010;16(2):699–710.

    Article  CAS  Google Scholar 

  34. Mignard X, Ruppert AM, Antoine M, Vasseur J, Girard N, Mazieres J, Moro-Sibilot D, Fallet V, Rabbe N, Thivolet-Bejui F, Rouquette I, Lantuejoul S, Cortot A, Saffroy R, Cadranel J, Lemoine A, Wislez M. c-MET overexpression as a poor predictor of MET amplifications or exon 14 mutations in lung sarcomatoid carcinomas. J Thorac Oncol. 2018;13(12):1962–7.

    Article  CAS  Google Scholar 

  35. Reams AB, Roth JR. Mechanisms of gene duplication and amplification. Cold Spring Harb Perspect Biol. 2015;7(2):a016592.

    Article  Google Scholar 

  36. Noonan SA, Berry L, Lu X, Gao D, Baron AE, Chesnut P, Sheren J, Aisner DL, Merrick D, Doebele RC, Varella-Garcia M, Camidge DR. Identifying the appropriate FISH criteria for defining MET copy number-driven lung adenocarcinoma through oncogene overlap analysis. J Thorac Oncol. 2016;11(8):1293–304.

    Article  Google Scholar 

  37. Drilon A, Cappuzzo F, Ou SI, Camidge DR. Targeting MET in lung cancer: will expectations finally be MET? J Thorac Oncol. 2017;12(1):15–26.

    Article  Google Scholar 

  38. Jardim DL, Tang C, Gagliato DM, Falchook GS, Hess K, Janku F, Fu S, Wheler JJ, Zinner RG, Naing A, Tsimberidou AM, Holla V, Li MM, Roy-Chowdhuri S, Luthra R, Salgia R, Kurzrock R, Meric-Bernstam F, Hong DS. Analysis of 1,115 patients tested for MET amplification and therapy response in the MD Anderson Phase I Clinic. Clin Cancer Res. 2014;20(24):6336–45.

    Article  CAS  Google Scholar 

  39. Lee CC, Yamada KM. Identification of a novel type of alternative splicing of a tyrosine kinase receptor. Juxtamembrane deletion of the c-met protein kinase C serine phosphorylation regulatory site. J Biol Chem. 1994;269(30):19457–61.

    Article  CAS  Google Scholar 

  40. Ma PC, Kijima T, Maulik G, Fox EA, Sattler M, Griffin JD, Johnson BE, Salgia R. c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res. 2003;63(19):6272–81.

    CAS  Google Scholar 

  41. Ponzetto C, Bardelli A, Zhen Z, Maina F, dalla Zonca P, Giordano S, Graziani A, Panayotou G, Comoglio PM. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell. 1994;77(2):261–71.

    Article  CAS  Google Scholar 

  42. Peschard P, Ishiyama N, Lin T, Lipkowitz S, Park M. A conserved DpYR motif in the juxtamembrane domain of the Met receptor family forms an atypical c-Cbl/Cbl-b tyrosine kinase binding domain binding site required for suppression of oncogenic activation. J Biol Chem. 2004;279(28):29565–71.

    Article  CAS  Google Scholar 

  43. Dhillon S. Capmatinib: first approval. Drugs. 2020;80(11):1125–31.

    Article  CAS  Google Scholar 

  44. Awad MM, Lee JK, Madison R, Classon A, Kmak J, Frampton GM, Alexander BM, Venstrom J, Schrock AB. Characterization of 1,387 NSCLCs with MET exon 14 (METex14) skipping alterations (SA) and potential acquired resistance (AR) mechanisms. J Clin Oncol. 2020;38(15_suppl):9511.

    Article  Google Scholar 

  45. Shi M, Ma J, Feng M, Liang L, Chen H, Wang T, Xie Z. Novel MET exon 14 skipping analogs characterized in non-small cell lung cancer patients: a case study. Cancer Gene. 2021;256-257:62–7.

    Article  CAS  Google Scholar 

  46. Davies KD, Ng TL, Estrada-Bernal A, Le AT, Ennever PR, Camidge DR, Doebele RC, Aisner DL. Dramatic response to crizotinib in a patient with lung cancer positive for an HLA-DRB1-MET gene fusion. JCO Precis Oncol. 2017;2017(1).

  47. Gow CH, Liu YN, Li HY, Hsieh MS, Chang SH, Luo SC, Tsai TH, Chen PL, Tsai MF, Shih JY. Oncogenic function of a KIF5B-MET fusion variant in non-small cell lung cancer. Neoplasia. 2018;20(8):838–47.

    Article  CAS  Google Scholar 

  48. Cho JH, Ku BM, Sun JM, Lee SH, Ahn JS, Park K, Ahn MJ. KIF5B-MET gene rearrangement with robust antitumor activity in response to crizotinib in lung adenocarcinoma. J Thorac Oncol. 2018;13(3):e29–31.

    Article  Google Scholar 

  49. Plenker D, Bertrand M, de Langen AJ, Riedel R, Lorenz C, Scheel AH, Muller J, Bragelmann J, Dassler-Plenker J, Kobe C, Persigehl T, Kluge A, Wurdinger T, Schellen P, Hartmann G, Zacherle T, Menon R, Thunnissen E, Buttner R, et al. Structural alterations of MET trigger response to MET kinase inhibition in lung adenocarcinoma patients. Clin Cancer Res. 2018;24(6):1337–43.

    Article  CAS  Google Scholar 

  50. Puri N, Salgia R. Synergism of EGFR and c-Met pathways, cross-talk and inhibition, in non-small cell lung cancer. J Carcinog. 2008;7:9.

    Article  Google Scholar 

  51. Cappuzzo F, Janne PA, Skokan M, Finocchiaro G, Rossi E, Ligorio C, Zucali PA, Terracciano L, Toschi L, Roncalli M, Destro A, Incarbone M, Alloisio M, Santoro A, Varella-Garcia M. MET increased gene copy number and primary resistance to gefitinib therapy in non-small-cell lung cancer patients. Ann Oncol. 2009;20(2):298–304.

    Article  CAS  Google Scholar 

  52. Turke AB, Zejnullahu K, Wu YL, Song Y, Dias-Santagata D, Lifshits E, Toschi L, Rogers A, Mok T, Sequist L, Lindeman NI, Murphy C, Akhavanfard S, Yeap BY, Xiao Y, Capelletti M, Iafrate AJ, Lee C, Christensen JG, et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell. 2010;17(1):77–88.

    Article  CAS  Google Scholar 

  53. Papadimitrakopoulou V, Wu YL, Han JY, Ahn MJ, Ramalingam S, John T, Okamoto I, Yang JCH, Bulusu K, Laus G, Collins B, Barrett J, Chmielecki J, Mok T. LBA51Analysis of resistance mechanisms to osimertinib in patients with EGFR T790M advanced NSCLC from the AURA3 study. Ann Oncol. 2018;29.

  54. Ramalingam S, Cheng Y, Zhou C, Ohe Y, Imamura F, Cho B, Lin M-C, Majem M, Shah R, Rukazenkov Y, Todd A, Markovets A, Barrett J, Chmielecki J, Gray J. LBA50Mechanisms of acquired resistance to first-line osimertinib: preliminary data from the phase III FLAURA study. Ann Oncol. 2018;29.

  55. Leonetti A, Sharma S, Minari R, Perego P, Giovannetti E, Tiseo M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer. 2019;121(9):725–37.

    Article  Google Scholar 

  56. Suda K, Murakami I, Katayama T, Tomizawa K, Osada H, Sekido Y, Maehara Y, Yatabe Y, Mitsudomi T. Reciprocal and complementary role of MET amplification and EGFR T790M mutation in acquired resistance to kinase inhibitors in lung cancer. Clin Cancer Res. 2010;16(22):5489–98.

    Article  CAS  Google Scholar 

  57. Le X, Puri S, Negrao MV, Nilsson MB, Robichaux J, Boyle T, Hicks JK, Lovinger KL, Roarty E, Rinsurongkawong W, Tang M, Sun H, Elamin Y, Lacerda LC, Lewis J, Roth JA, Swisher SG, Lee JJ, William WN Jr, et al. Landscape of EGFR-dependent and -independent resistance mechanisms to osimertinib and continuation therapy beyond progression in EGFR-mutant NSCLC. Clin Cancer Res. 2018;24(24):6195–203.

    Article  CAS  Google Scholar 

  58. Jackman D, Pao W, Riely GJ, Engelman JA, Kris MG, Janne PA, Lynch T, Johnson BE, Miller VA. Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J Clin Oncol. 2010;28(2):357–60.

    Article  CAS  Google Scholar 

  59. Wolf J, Seto T, Han JY, Reguart N, Garon EB, Groen HJM, Tan DSW, Hida T, de Jonge M, Orlov SV, Smit EF, Souquet PJ, Vansteenkiste J, Hochmair M, Felip E, Nishio M, Thomas M, Ohashi K, Toyozawa R, et al. Capmatinib in MET exon 14-mutated or MET-amplified non-small-cell lung cancer. N Engl J Med. 2020;383(10):944–57.

    Article  CAS  Google Scholar 

  60. Lu S, Fang J, Li X, Cao L, Zhou J, Guo Q, Liang Z, Cheng Y, Jiang L, Yang N, Han Z, Shi J, Chen Y, Xu H, Zhang H, Zhang D, Li J, Wang L, Ren Y, Su W. Phase II study of savolitinib in patients (pts) with pulmonary sarcomatoid carcinoma (PSC) and other types of non-small cell lung cancer (NSCLC) harboring MET exon 14 skipping mutations (METex14+). J Clin Oncol. 2020;38(15_suppl):9519.

    Article  Google Scholar 

  61. Paik PK, Felip E, Veillon R, Sakai H, Cortot AB, Garassino MC, Mazieres J, Viteri S, Senellart H, Van Meerbeeck J, Raskin J, Reinmuth N, Conte P, Kowalski D, Cho BC, Patel JD, Horn L, Griesinger F, Han JY, et al. Tepotinib in non-small-cell lung cancer with MET exon 14 skipping mutations. N Engl J Med. 2020;383(10):931–43.

    Article  CAS  Google Scholar 

  62. •• Drilon A, Clark JW, Weiss J, Ou SI, Camidge DR, Solomon BJ, et al. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration. Nat Med. 2020;26(1):47-51. This trial provides first prospective evidence of the efficacy of MET inhibition in exon 14 carriers.

  63. Le X, Hong L, Hensel C, Chen R, Kemp H, Coleman N, Ciunci CA, Liu SV, Negrao MV, Yen J, Xia X, Scheuenpflug J, Stroh C, Juraeva D, Tsao A, Hong D, Raymond V, Paik P, Zhang J, Heymach JV. Landscape and clonal dominance of co-occurring genomic alterations in non-small-cell lung cancer harboring MET exon 14 skipping. JCO Precis Oncol. 2021;5.

  64. Rotow JK, Gui P, Wu W, Raymond VM, Lanman RB, Kaye FJ, Peled N, Fece de la Cruz F, Nadres B, Corcoran RB, Yeh I, Bastian BC, Starostik P, Newsom K, Olivas VR, Wolff AM, Fraser JS, Collisson EA, McCoach CE, et al. Co-occurring alterations in the RAS-MAPK pathway limit response to MET inhibitor treatment in MET exon 14 skipping mutation-positive lung cancer. Clin Cancer Res. 2020;26(2):439–49.

    Article  CAS  Google Scholar 

  65. Fujino T, Kobayashi Y, Suda K, Koga T, Nishino M, Ohara S, Chiba M, Shimoji M, Tomizawa K, Takemoto T, Mitsudomi T. Sensitivity and resistance of MET exon 14 mutations in lung cancer to eight MET tyrosine kinase inhibitors in vitro. J Thorac Oncol. 2019;14(10):1753–65.

    Article  CAS  Google Scholar 

  66. •• Dagogo-Jack I, Moonsamy P, Gainor JF, Lennerz JK, Piotrowska Z, Lin JJ, et al. A Phase 2 study of capmatinib in patients with MET-altered lung cancer previously treated with a MET inhibitor. J Thorac Oncol. 2021;16(5):850-9. The first and systemically designed trial aimed to investigate the question of acquired resistance to crizotinib in MET altered NSCLC.

  67. Recondo G, Bahcall M, Spurr LF, Che J, Ricciuti B, Leonardi GC, Lo YC, Li YY, Lamberti G, Nguyen T, Milan MSD, Venkatraman D, Umeton R, Paweletz CP, Albayrak A, Cherniack AD, Price KS, Fairclough SR, Nishino M, et al. Molecular mechanisms of acquired resistance to MET tyrosine kinase inhibitors in patients with MET exon 14-mutant NSCLC. Clin Cancer Res. 2020;26(11):2615–25.

    Article  CAS  Google Scholar 

  68. Moro-Sibilot D, Cozic N, Perol M, Mazieres J, Otto J, Souquet PJ, Bahleda R, Wislez M, Zalcman G, Guibert SD, Barlesi F, Mennecier B, Monnet I, Sabatier R, Bota S, Dubos C, Verriele V, Haddad V, Ferretti G, et al. Crizotinib in c-MET- or ROS1-positive NSCLC: results of the AcSe phase II trial. Ann Oncol. 2019;30(12):1985–91.

    Article  CAS  Google Scholar 

  69. Landi L, Chiari R, Tiseo M, D'Inca F, Dazzi C, Chella A, Delmonte A, Bonanno L, Giannarelli D, Cortinovis DL, de Marinis F, Borra G, Morabito A, Gridelli C, Galetta D, Barbieri F, Grossi F, Capelletto E, Minuti G, et al. Crizotinib in MET-deregulated or ros1-rearranged pretreated non-small cell lung cancer (METROS): a Phase II, prospective, multicenter, two-arms trial. Clin Cancer Res. 2019;25(24):7312–9.

    Article  CAS  Google Scholar 

  70. Schuler M, Berardi R, Lim WT, de Jonge M, Bauer TM, Azaro A, Gottfried M, Han JY, Lee DH, Wollner M, Hong DS, Vogel A, Delmonte A, Akimov M, Ghebremariam S, Cui X, Nwana N, Giovannini M, Kim TM. Molecular correlates of response to capmatinib in advanced non-small-cell lung cancer: clinical and biomarker results from a phase I trial. Ann Oncol. 2020;31(6):789–97.

    Article  CAS  Google Scholar 

  71. Wolf J, Garon EB, Groen HJM, Tan DS-W, Robeva A, Mouhaer SL, Carbini M, Chassot-Agostinho A, Heist RS. Capmatinib in MET exon 14-mutated, advanced NSCLC: Updated results from the GEOMETRY mono-1 study. J Clin Oncol. 2021;39(15_suppl):9020.

    Article  Google Scholar 

  72. Seto T, Ohashi K, Sugawara S, Nishio M, Takeda M, Aoe K, Moizumi S, Nomura S, Tajima T, Hida T. Capmatinib in Japanese patients with MET exon 14 skipping-mutated or MET-amplified advanced NSCLC: GEOMETRY mono-1 study. Cancer Sci. 2021;112(4):1556–66.

    Article  CAS  Google Scholar 

  73. Lu S, Fang J, Li X, Cao L, Zhou J, Guo Q, Liang Z, Cheng Y, Jiang L, Yang N, Han Z, Shi J, Chen Y, Xu H, Zhang H, Chen G, Ma R, Sun S, Fan Y, et al. Once-daily savolitinib in Chinese patients with pulmonary sarcomatoid carcinomas and other non-small-cell lung cancers harbouring MET exon 14 skipping alterations: a multicentre, single-arm, open-label, phase 2 study. Lancet Respir Med. 2021;9(10):1154–64.

    Article  CAS  Google Scholar 

  74. Lu S, Fang J, Li X, Cao L, Zhou J, Guo Q, Liang Z, Cheng Y, Jiang L, Yang N, Han Z, Shi J, Chen Y, Xu H, Zhang H, Chen G, Ma R, Sun S, Fan Y, Weiguo S. 2MO Final OS results and subgroup analysis of savolitinib in patients with MET exon 14 skipping mutations (METex14+) NSCLC. Ann Oncol. 2022;33:S27.

    Article  Google Scholar 

  75. Camidge DR, Janku F, Martinez-Bueno A, Catenacci DVT, Lee J, Lee S-H, Dowlati A, Rohrberg KS, Navarro A, Moon YW, Awad MM, Heist RS, Poulsen TT, Yablonovitch A, Fosler L, Rudbaek H, Nygaard F, Wood DL, Dalal RP, Felip E. Safety and preliminary clinical activity of the MET antibody mixture, Sym015 in advanced non-small cell lung cancer (NSCLC) patients with MET amplification/exon 14 deletion (METAmp/Ex14∆). J Clin Oncol. 2020;38(15_suppl):9510.

    Article  Google Scholar 

  76. Krebs M, Spira AI, Cho BC, Besse B, Goldman JW, Janne PA, Ma Z, Mansfield AS, Minchom AR, Ou S-HI, Salgia R, Wang Z, Perez CL, Gao G, Curtin JC, Roshak A, Schnepp RW, Thayu M, Knoblauch R, Lee CK. Amivantamab in patients with NSCLC with MET exon 14 skipping mutation: updated results from the CHRYSALIS study. J Clin Oncol. 2022;40(16_suppl):9008.

    Article  Google Scholar 

  77. Camidge DR, Otterson GA, Clark JW, Ou S-HI, Weiss J, Ades S, Conte U, Tang Y, Wang SC-E, Murphy D, Wilner KD, Villaruz LC. Crizotinib in patients (pts) with MET-amplified non-small cell lung cancer (NSCLC): updated safety and efficacy findings from a phase 1 trial. J Clin Oncol. 2018;36(15_suppl):9062.

    Article  Google Scholar 

  78. Li A, Yang J, Zhang X, Su J, Zhou Q, Chen H, Xie Z, Tu H, Zhong W, Wang Z, Xu C, Chen Z, Yan H, Wu Y. P1.01-018 Acquired resistance to crizotinib in advanced NSCLC with de novo MET overexpression. J Thoracic Oncol. 2017;12(11):S1899.

    Article  Google Scholar 

  79. Le X., Paz-Ares L. G., Meerbeeck J. V., Viteri S., Galvez C. C., Baz D. V., Kim Y.-C., Kang J.-H., Schumacher K.-M., Karachaliou N., Adrian S., Bruns R., Paik P. K. Tepotinib in patients (pts) with advanced non-small cell lung cancer (NSCLC) with MET amplification (METamp). J Clin Oncol. 2021;39, 15_suppl. 9021-9021.

  80. Camidge DR, Moiseenko F, Cicin I, Horinouchi H, Filippova E, Bar J, Lu S, Tomasini P, Ocampo C, Sullivan D, Maag D, Goldman J. OA15.04 telisotuzumab Vedotin (teliso-v) monotherapy in patients with previously treated c-Met<sup>+</sup> advanced non-small cell lung cancer. J Thorac Oncol. 2021;16(10):S875.

    Article  Google Scholar 

  81. Jenkins RW, Oxnard GR, Elkin S, Sullivan EK, Carter JL, Barbie DA. Response to crizotinib in a patient with lung adenocarcinoma harboring a MET splice site mutation. Clin Lung Cancer. 2015;16(5):e101–4.

    Article  CAS  Google Scholar 

  82. Frampton GM, Ali SM, Rosenzweig M, Chmielecki J, Lu X, Bauer TM, Akimov M, Bufill JA, Lee C, Jentz D, Hoover R, Ou SH, Salgia R, Brennan T, Chalmers ZR, Jaeger S, Huang A, Elvin JA, Erlich R, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015;5(8):850–9.

    Article  CAS  Google Scholar 

  83. Waqar SN, Morgensztern D, Sehn J. MET mutation associated with responsiveness to crizotinib. J Thorac Oncol. 2015;10(5):e29–31.

    Article  Google Scholar 

  84. Camidge DR, Ou S-HI, Shapiro G, Otterson GA, Villaruz LC, Villalona-Calero MA, Iafrate AJ, Varella-Garcia M, Dacic S, Cardarella S, Zhao W, Tye L, Stephenson P, Wilner KD, James LP, Socinski MA. Efficacy and safety of crizotinib in patients with advanced c-MET-amplified non-small cell lung cancer (NSCLC). J Clin Oncol. 2014;32(15_suppl):8001.

    Article  Google Scholar 

  85. •• Wolf J, Seto T, Han JY, Reguart N, Garon EB, Groen HJM, et al. Capmatinib in MET exon 14-mutated or MET-amplified non-small-cell lung cancer. N Engl J Med. 2020;383(10):944-57. The trial comprehensively evaluated the efficacy of contemporary MET specific agent capmatinib in exon 14 mutated NSCLC.

  86. Bladt F, Faden B, Friese-Hamim M, Knuehl C, Wilm C, Fittschen C, Gradler U, Meyring M, Dorsch D, Jaehrling F, Pehl U, Stieber F, Schadt O, Blaukat A. EMD 1214063 and EMD 1204831 constitute a new class of potent and highly selective c-Met inhibitors. Clin Cancer Res. 2013;19(11):2941–51.

    Article  CAS  Google Scholar 

  87. •• Falchook GS, Kurzrock R, Amin HM, Xiong W, Fu S, Piha-Paul SA, et al. First-in-man Phase I trial of the selective MET inhibitor tepotinib in patients with advanced solid tumors. Clin Cancer Res. 2020;26(6):1237-46. The trial comprehensively evaluated the efficacy of contemporary MET specific agent tepotinib in exon 14 mutated NSCLC.

  88. Hu H, Mu Q, Bao Z, Chen Y, Liu Y, Chen J, Wang K, Wang Z, Nam Y, Jiang B, Sa JK, Cho HJ, Her NG, Zhang C, Zhao Z, Zhang Y, Zeng F, Wu F, Kang X, et al. Mutational landscape of secondary glioblastoma guides MET-targeted trial in brain tumor. Cell. 2018;175(6):1665–78 e18.

  89. Yang J, Zhou Q, Chen H, Wu L, Zhao J, Guo R, Fan Y, Shi H, Xue W, Zhang P, Han H-Z, Lin X, Chen S, Zhang L, Liu H, Mao X, Gan B, Wu Y. Abstract CT127: A phase I study of cMET inhibitor bozitinib in patients with advanced NSCLC harboring cMET alterations. Cancer Res. 2020;80(16_Supplement):CT127.

    Article  Google Scholar 

  90. Ugolini A, Kenigsberg M, Rak A, Vallee F, Houtmann J, Lowinski M, Capdevila C, Khider J, Albert E, Martinet N, Nemecek C, Grapinet S, Bacque E, Roesner M, Delaisi C, Calvet L, Bonche F, Semiond D, Egile C, et al. Discovery and Pharmacokinetic and Pharmacological Properties of the Potent and Selective MET Kinase Inhibitor 1-{6-[6-(4-Fluorophenyl)-[1,2,4]triazolo[4,3-b]pyridazin-3-ylsulfanyl]benzothiazo l-2-yl}-3-(2-morpholin-4-ylethyl)urea (SAR125844). J Med Chem. 2016;59(15):7066–74.

    Article  CAS  Google Scholar 

  91. Angevin E, Spitaleri G, Rodon J, Dotti K, Isambert N, Salvagni S, Moreno V, Assadourian S, Gomez C, Harnois M, Hollebecque A, Azaro A, Hervieu A, Rihawi K, De Marinis F. A first-in-human phase I study of SAR125844, a selective MET tyrosine kinase inhibitor, in patients with advanced solid tumours with MET amplification. Eur J Cancer. 2017;87:131–9.

    Article  CAS  Google Scholar 

  92. Shitara K, Kim TM, Yokota T, Goto M, Satoh T, Ahn JH, Kim HS, Assadourian S, Gomez C, Harnois M, Hamauchi S, Kudo T, Doi T, Bang YJ. Phase I dose-escalation study of the c-Met tyrosine kinase inhibitor SAR125844 in Asian patients with advanced solid tumors, including patients with MET-amplified gastric cancer. Oncotarget. 2017;8(45):79546–55.

    Article  Google Scholar 

  93. Wang SXY, Zhang BM, Wakelee HA, Koontz MZ, Pan M, Diehn M, Kunder CA, Neal JW. Case series of MET exon 14 skipping mutation-positive non-small-cell lung cancers with response to crizotinib and cabozantinib. Anticancer Drugs. 2019;30(5):537–41.

    Article  CAS  Google Scholar 

  94. Klempner SJ, Borghei A, Hakimian B, Ali SM, Ou SI. Intracranial activity of cabozantinib in MET exon 14-positive NSCLC with brain metastases. J Thorac Oncol. 2017;12(1):152–6.

    Article  Google Scholar 

  95. Fujino T, Suda K, Koga T, Hamada A, Ohara S, Chiba M, Shimoji M, Takemoto T, Soh J, Mitsudomi T. Foretinib can overcome common on-target resistance mutations after capmatinib/tepotinib treatment in NSCLCs with MET exon 14 skipping mutation. J Hematol Oncol. 2022;15(1):79.

    Article  CAS  Google Scholar 

  96. Engstrom LD, Aranda R, Lee M, Tovar EA, Essenburg CJ, Madaj Z, Chiang H, Briere D, Hallin J, Lopez-Casas PP, Banos N, Menendez C, Hidalgo M, Tassell V, Chao R, Chudova DI, Lanman RB, Olson P, Bazhenova L, et al. Glesatinib exhibits antitumor activity in lung cancer models and patients harboring MET exon 14 mutations and overcomes mutation-mediated resistance to Type I MET inhibitors in nonclinical models. Clin Cancer Res. 2017;23(21):6661–72.

    Article  CAS  Google Scholar 

  97. Wu W, Bi C, Credille KM, Manro JR, Peek VL, Donoho GP, Yan L, Wijsman JA, Yan SB, Walgren RA. Inhibition of tumor growth and metastasis in non-small cell lung cancer by LY2801653, an inhibitor of several oncokinases, including MET. Clin Cancer Res. 2013;19(20):5699–710.

    Article  CAS  Google Scholar 

  98. Ai J, Chen Y, Peng X, Ji Y, Xi Y, Shen Y, Yang X, Su Y, Sun Y, Gao Y, Ma Y, Xiong B, Shen J, Ding J, Geng M. Preclinical evaluation of SCC244 (Glumetinib), a Novel, potent, and highly selective inhibitor of c-Met in MET-dependent cancer models. Mol Cancer Ther. 2018;17(4):751–62.

    Article  CAS  Google Scholar 

  99. Clemenson C, Chargari C, Liu W, Mondini M, Ferte C, Burbridge MF, Cattan V, Jacquet-Bescond A, Deutsch E. The MET/AXL/FGFR inhibitor S49076 impairs Aurora B activity and improves the antitumor efficacy of radiotherapy. Mol Cancer Ther. 2017;16(10):2107–19.

    Article  CAS  Google Scholar 

  100. Lee BS, Kim HJ, Hwang JW, Cheong KH, Kim KA, Cha HY, Lee JM, Kim CH. The dual inhibition of Met and EGFR by ME22S, a novel Met/EGFR bispecific monoclonal antibody, suppresses the proliferation and invasion of laryngeal cancer. Ann Surg Oncol. 2016;23(6):2046–53.

    Article  Google Scholar 

  101. Patnaik A, Gordon M, Tsai F, Papadopoulos KP, Rasco D, Beeram M, Fu S, Janku F, Hynes SM, Gundala SR, Willard MD, Zhang W, Lin AB, Hong D. A phase I study of LY3164530, a bispecific antibody targeting MET and EGFR, in patients with advanced or metastatic cancer. Cancer Chemother Pharmacol. 2018;82(3):407–18.

    Article  CAS  Google Scholar 

  102. Lee JM, Lee SH, Hwang JW, Oh SJ, Kim B, Jung S, Shim SH, Lin PW, Lee SB, Cho MY, Koh YJ, Kim SY, Ahn S, Lee J, Kim KM, Cheong KH, Choi J, Kim KA. Novel strategy for a bispecific antibody: induction of dual target internalization and degradation. Oncogene. 2016;35(34):4437–46.

    Article  CAS  Google Scholar 

  103. de Gorter DJ, Deshiere A, van Rosmalen M, Wohn C, Eppink B, Gallenne T, Klooster R, Mao L, Xu W, Deng L, Shu Q, Liu W, de Kruif J, Matteo MD, Mazzone M, Throsby M, Geuijen CA. Abstract 952: The bispecific antibody MCLA-129 impairs NSCLC tumor growth by targeting EGFR and c-MET, inhibiting ligand-induced signaling and promoting ADCC and ADCP. Cancer Res. 2021;81(13_Supplement):952.

    Article  Google Scholar 

  104. Rowlands T, Boyapati A, Li S, Daly C, Seebach FA, Lowy I, Rietschel P. A phase I/II study of REGN5093, a MET x MET bispecific antibody, in patients with MET-altered advanced non-small cell lung cancer (NSCLC). J Clin Oncol. 2020;38(15_suppl):TPS9628.

    Article  Google Scholar 

  105. Scagliotti G, Moro-Sibilot D, Kollmeier J, Favaretto A, Cho EK, Grosch H, Kimmich M, Girard N, Tsai CM, Hsia TC, Brighenti M, Schumann C, Wang XA, Wijayawardana SR, Gruver AM, Wallin J, Mansouri K, Wacheck V, Chang GC. A randomized-controlled Phase 2 study of the MET antibody emibetuzumab in combination with erlotinib as first-line treatment for EGFR mutation-positive NSCLC patients. J Thorac Oncol. 2020;15(1):80–90.

    Article  CAS  Google Scholar 

  106. Casaletto JB, Geddie ML, Abu-Yousif AO, Masson K, Fulgham A, Boudot A, Maiwald T, Kearns JD, Kohli N, Su S, Razlog M, Raue A, Kalra A, Hakansson M, Logan DT, Welin M, Chattopadhyay S, Harms BD, Nielsen UB, et al. MM-131, a bispecific anti-Met/EpCAM mAb, inhibits HGF-dependent and HGF-independent Met signaling through concurrent binding to EpCAM. Proc Natl Acad Sci U S A. 2019;116(15):7533–42.

    Article  CAS  Google Scholar 

  107. Camidge DR, Moiseenko F, Cicin I, Horinouchi H, Filippova E, Bar J, Lu S, Tomasini P, Ocampo C, Sullivan D, Maag D, Goldman JW. Abstract CT179: Telisotuzumab vedotin (teliso-v) monotherapy in patients with previously treated c-Met+ advanced non-small cell lung cancer. Cancer Research. 2021;81(13_Supplement):CT179.

    Article  Google Scholar 

  108. Camidge DR, Bar J, Horinouchi H, Goldman JW, Moiseenko FV, Filippova E, Cicin I, Bradbury PA, Daaboul N, Tomasini P, Ciuleanu T-E, Planchard D, Moskovitz M, Girard N, Jin JY, Dunbar M, Bolotin E, Looman J, Ratajczak C, Lu S. Telisotuzumab vedotin (Teliso-V) monotherapy in patients (pts) with previously treated c-Metoverexpressing (OE) advanced non-small cell lung cancer (NSCLC). J Clin Oncol. 2022;40(16_suppl):9016.

    Article  Google Scholar 

  109. Sequist LV, von Pawel J, Garmey EG, Akerley WL, Brugger W, Ferrari D, Chen Y, Costa DB, Gerber DE, Orlov S, Ramlau R, Arthur S, Gorbachevsky I, Schwartz B, Schiller JH. Randomized phase II study of erlotinib plus tivantinib versus erlotinib plus placebo in previously treated non-small-cell lung cancer. J Clin Oncol. 2011;29(24):3307–15.

    Article  CAS  Google Scholar 

  110. Scagliotti G, von Pawel J, Novello S, Ramlau R, Favaretto A, Barlesi F, Akerley W, Orlov S, Santoro A, Spigel D, Hirsh V, Shepherd FA, Sequist LV, Sandler A, Ross JS, Wang Q, von Roemeling R, Shuster D, Schwartz B. Phase III multinational, randomized, double-blind, placebo-controlled study of tivantinib (ARQ 197) plus erlotinib versus erlotinib alone in previously treated patients with locally advanced or metastatic nonsquamous non-small-cell lung cancer. J Clin Oncol. 2015;33(24):2667–74.

    Article  CAS  Google Scholar 

  111. Nishio M, Horiike A, Nokihara H, Horinouchi H, Nakamichi S, Wakui H, Ohyanagi F, Kudo K, Yanagitani N, Takahashi S, Kuboki Y, Yamamoto N, Yamada Y, Abe M, Tahata T, Tamura T. Phase I study of the anti-MET antibody onartuzumab in patients with solid tumors and MET-positive lung cancer. Invest New Drugs. 2015;33(3):632–40.

    Article  CAS  Google Scholar 

  112. Wu YL, Cheng Y, Zhou J, Lu S, Zhang Y, Zhao J, Kim DW, Soo RA, Kim SW, Pan H, Chen YM, Chian CF, Liu X, Tan DSW, Bruns R, Straub J, Johne A, Scheele J, Park K, et al. Tepotinib plus gefitinib in patients with EGFR-mutant non-small-cell lung cancer with MET overexpression or MET amplification and acquired resistance to previous EGFR inhibitor (INSIGHT study): an open-label, phase 1b/2, multicentre, randomised trial. Lancet Respir Med. 2020;8(11):1132–43.

    Article  CAS  Google Scholar 

  113. Sequist LV, Han JY, Ahn MJ, Cho BC, Yu H, Kim SW, Yang JC, Lee JS, Su WC, Kowalski D, Orlov S, Cantarini M, Verheijen RB, Mellemgaard A, Ottesen L, Frewer P, Ou X, Oxnard G. Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: interim results from a multicentre, open-label, phase 1b study. Lancet Oncol. 2020;21(3):373–86.

    Article  CAS  Google Scholar 

  114. McCoach CE, Yu A, Gandara DR, Riess J, Li T, Lara P, Mack PC, Beckett L, Slosberg ED, Kelly K. Phase I study of INC280 plus erlotinib in patients with MET expressing adenocarcinoma of the lung. J Clin Oncol. 2015;33(15_suppl):2587.

    Article  Google Scholar 

  115. McCoach CE, Yu A, Gandara DR, Riess JW, Vang DP, Li T, Lara PN, Gubens M, Lara F, Mack PC, Beckett LA, Kelly K. Phase I/II Study of capmatinib plus erlotinib in patients with MET-positive non-small-cell lung cancer. JCO Precis Oncol. 2021;1.

  116. Wu YL, Zhang L, Kim DW, Liu X, Lee DH, Yang JC, Ahn MJ, Vansteenkiste JF, Su WC, Felip E, Chia V, Glaser S, Pultar P, Zhao S, Peng B, Akimov M, Tan DSW. Phase Ib/II study of capmatinib (INC280) Plus gefitinib after failure of Epidermal Growth Factor Receptor (EGFR) inhibitor therapy in patients with EGFR-mutated, MET factor-dysregulated non-small-cell lung cancer. J Clin Oncol. 2018;36(31):3101–9.

    Article  CAS  Google Scholar 

  117. Camidge DR, Barlesi F, Goldman JW, Morgensztern D, Heist RS, Vokes EE, Spira AI, Angevin E, Su W-C, Hong DS, Strickler JH, Motwani M, Sun Z, Parikh A, Noon E, Wu J, Kelly K. Results of the phase 1b study of ABBV-399 (telisotuzumab vedotin; teliso-v) in combination with erlotinib in patients with c-Met+ non-small cell lung cancer by EGFR mutation status. J Clin Oncol. 2019;37(15_suppl):3011.

    Article  Google Scholar 

  118. Felip E, Minotti V, Soo R, Wolf J, Solomon B, Tan D, Ardizzoni A, Lee DH, Sequist LV, Barlesi F, Paz-Ares L, Rodriguez-Abreu D, Campelo MR, Sprauten M, Djentuh L, Belli R, Glaser S, Zou M, Giovannini M, Wang J. 1284P MET inhibitor capmatinib plus EGFR tyrosine kinase inhibitor nazartinib for EGFR-mutant non-small cell lung cancer. Ann Oncol. 2020;31:S829–30.

    Article  Google Scholar 

  119. Camidge DR, Moran T, Demedts I, Grosch H, Mileham K, Molina J, Juan-Vidal O, Bepler G, Goldman JW, Park K, Wallin J, Wijayawardana SR, Wang XA, Wacheck V, Smit E. A randomized, open-label Phase II study evaluating emibetuzumab plus erlotinib and emibetuzumab monotherapy in MET immunohistochemistry positive NSCLC patients with acquired resistance to erlotinib. Clin Lung Cancer. 2022. https://doi.org/10.1016/j.cllc.2022.03.003.

  120. Shu CA, Goto K, Ohe Y, Besse B, Lee S-H, Wang Y, Griesinger F, Yang JC-H, Felip E, Sanborn RE, Caro RB, Curtin JC, Chen J, Mahoney JM, Trani L, Bauml JM, Knoblauch RE, Thayu M, Cho BC. Amivantamab and lazertinib in patients with EGFR-mutant nonsmall cell lung (NSCLC) after progression on osimertinib and platinum-based chemotherapy: Updated results from CHRYSALIS-2. J Clin Oncol. 2022;40(16_suppl):9006.

    Article  Google Scholar 

  121. Bauml J, Cho BC, Park K, Lee KH, CHO EK, Kim D-W, Kim S-W, Haura EB, Sabari JK, Sanborn RE, Nagasaka M, Ou S-HI, Minchom AR, Gomez JE, Curtin JC, Gao G, Roshak A, Thayu M, Knoblauch RE, Spira AI. Amivantamab in combination with lazertinib for the treatment of osimertinib-relapsed, chemotherapy-naïve EGFR mutant (EGFRm) non-small cell lung cancer (NSCLC) and potential biomarkers for response. J Clin Oncol. 2021;39(15_suppl):9006.

    Article  Google Scholar 

  122. Benkhoucha M, Santiago-Raber ML, Schneiter G, Chofflon M, Funakoshi H, Nakamura T, Lalive PH. Hepatocyte growth factor inhibits CNS autoimmunity by inducing tolerogenic dendritic cells and CD25+Foxp3+ regulatory T cells. Proc Natl Acad Sci U S A. 2010;107(14):6424–9.

    Article  CAS  Google Scholar 

  123. Li H, Li CW, Li X, Ding Q, Guo L, Liu S, Liu C, Lai CC, Hsu JM, Dong Q, Xia W, Hsu JL, Yamaguchi H, Du Y, Lai YJ, Sun X, Koller PB, Ye Q, Hung MC. MET inhibitors promote liver tumor evasion of the immune response by stabilizing PDL1. Gastroenterology. 2019;156(6):1849–61 e13.

  124. Study of capmatinib and spartalizumab/placebo in advanced NSCLC patients with MET exon 14 skipping mutations. // Book Study of capmatinib and spartalizumab/placebo in advanced NSCLC patients with MET exon 14 skipping mutations. / Editor.

  125. Felip E, Minotti V, Tan D, Wolf J, Mark M, Boyer M, Hughes B, Bearz A, Moro-Sibilot D, Le X, Vazquez J, Massuti B, Liu N, Hao L, Cheng Y, Tiedt R, Cobo M. P76.03 Efficacy and Safety of Capmatinib Plus Nivolumab in Pretreated Patients with <em>EGFR</em> Wild-Type Non&#x2013;Small Cell Lung Cancer. J Thorac Oncol. 2021;16(3):S585–6.

    Article  Google Scholar 

  126. Mok TSK, Cortinovis DL, Majem M, Johnson ML, Mardjuadi FI, Zhao X, Siripurapu SV, Jiang Z, Wolf J. Efficacy and safety of capmatinib plus pembrolizumab in treatment (tx)-naïve patients with advanced nonsmall cell lung cancer (NSCLC) with high tumor PD-L1 expression: Results of a randomized, open-label, multicenter, phase 2 study. J Clin Oncol. 2022;40(16_suppl):9118.

    Article  Google Scholar 

  127. •• Mazieres J, Drilon A, Lusque A, Mhanna L, Cortot AB, Mezquita L, et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann Oncol. 2019;30(8):1321-8. This trial provides the most compelling evidence of modest role of monotherpy with checkpoint inhibitors in NSCLC with driving alteration.

  128. Mayenga M, Assie JB, Monnet I, Massiani MA, Tabeze L, Friard S, Fraboulet S, Metivier AC, Chouaid C, Zemoura L, Longchampt E, Callens C, Melaabi S, Couderc LJ, Doubre H. Durable responses to immunotherapy of non-small cell lung cancers harboring MET exon-14-skipping mutation: a series of 6 cases. Lung Cancer. 2020;150:21–5.

    Article  Google Scholar 

  129. Saigi M, Alburquerque-Bejar JJ, Mc L-FA, Pereira C, Pros E, Romero OA, Baixeras N, Esteve-Codina A, Nadal E, Brambilla E, Sanchez-Cespedes M. MET-oncogenic and JAK2-inactivating alterations are independent factors that affect regulation of PD-L1 expression in lung cancer. Clin Cancer Res. 2018;24(18):4579–87.

    Article  CAS  Google Scholar 

  130. Sabari JK, Leonardi GC, Shu CA, Umeton R, Montecalvo J, Ni A, Chen R, Dienstag J, Mrad C, Bergagnini I, Lai WV, Offin M, Arbour KC, Plodkowski AJ, Halpenny DF, Paik PK, Li BT, Riely GJ, Kris MG, et al. PD-L1 expression, tumor mutational burden, and response to immunotherapy in patients with MET exon 14 altered lung cancers. Ann Oncol. 2018;29(10):2085–91.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fedor Moiseenko MD, PhD.

Ethics declarations

Conflict of Interest

Fedor Moiseenko reports personal fees from Pfizer, personal fees and non-financial support from Astra Zeneca, personal fees from Takeda, personal fees and nonfinancial support from Biocad, personal fees from Novartis, personal fees from MSD, personal fees from Roche, personal fees from BMS, personal fees from Lilly, non-financial support from Boehringer Ingelheim, outside the submitted work. Alexey Bogdanov, Vitaliy Egorenkov, Nikita Volkov, and Vladimir Moiseyenko declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Lung Cancer

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseenko, F., Bogdanov, A., Egorenkov, V. et al. Management and Treatment of Non-small Cell Lung Cancer with MET Alteration and Mechanisms of Resistance. Curr. Treat. Options in Oncol. 23, 1664–1698 (2022). https://doi.org/10.1007/s11864-022-01019-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-022-01019-2

Keywords