Skip to main content

Advertisement

Log in

Current Trends in Precision Medicine and Next-Generation Sequencing in Head and Neck Cancer

  • Head and Neck Cancer (PL Swiecicki, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

As the field of oncology enters the era of precision medicine and targeted therapies, we have come to realize that there may be no single “magic bullet” for patients with head and neck cancer. While immune check point inhibitors and some targeted therapeutics have shown great promise in improving oncologic outcomes, the current standard of care in most patients with head and neck squamous cell carcinoma (HNSCC) remains a combination of surgery, radiation, and/or cytotoxic chemotherapy. Nevertheless, advances in precision medicine, next-generation sequencing (NGS), and targeted therapies have a potential future in the treatment of HNSCC. These roles include increased patient treatment stratification based on predictive biomarkers or targetable mutations and novel combinatorial regimens with existing HNSCC treatments. There remain challenges to precision medicine and NGS in HNSCC, including intertumor and intratumor heterogeneity, challenging targets, and need for further trials validating the utility of NGS and precision medicine. Additionally, there is a need for evidence-based practice guidelines to assist clinicians on how to appropriately incorporate NGS in care for HNSCC. In this review, we describe the current state of precision medicine and NGS in HNSCC and opportunities for future advances in this challenging but important field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Pulte D, Brenner H. "Changes in survival in head and neck cancers in the late 20th and early 21st century: a period analysis," (in eng). Oncologist. 2010;15(9):994–1001. https://doi.org/10.1634/theoncologist.2009-0289.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Patel J. Head and neck cancer: statistics. Cancer Net accessed July 2021.

  3. Syrjänen S. "Human papillomaviruses in head and neck carcinomas," (in eng). N Engl J Med. 2007;356(19):1993–5. https://doi.org/10.1056/NEJMe078004.

    Article  PubMed  Google Scholar 

  4. Ang KK, et al. "Human papillomavirus and survival of patients with oropharyngeal cancer," (in eng). N Engl J Med. 2010;363(1):24–35. https://doi.org/10.1056/NEJMoa0912217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tagliabue M, et al. "A systematic review and meta-analysis of the prognostic role of age in oral tongue cancer," (in eng). Cancer Med. 2021;10(8):2566–78. https://doi.org/10.1002/cam4.3795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Birkeland AC, Brenner JC. "Personalizing medicine in head and neck squamous cell carcinoma: the rationale for combination therapies," (in eng). Med Res Arch. 2015;3:2015. https://doi.org/10.18103/mra.v0i3.77.

    Article  Google Scholar 

  7. Behjati S, Tarpey PS. "What is next generation sequencing?," (in eng). Arch Dis Child Educ Pract Ed. 2013;98(6):236–8. https://doi.org/10.1136/archdischild-2013-304340.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Colomer R, Mondejar R, Romero-Laorden N, Alfranca A, Sanchez-Madrid F, Quintela-Fandino M. "When should we order a next generation sequencing test in a patient with cancer?," (in eng). EClinicalMedicine. 2020;25:100487. https://doi.org/10.1016/j.eclinm.2020.100487.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Freedman AN, et al. Use of next-generation sequencing tests to guide cancer treatment: results from a nationally representative survey of oncologists in the United States. JCO Precision Oncology. 2018;2:1–13. https://doi.org/10.1200/po.18.00169.

    Article  PubMed  Google Scholar 

  10. Bonner JA, et al. "Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck," (in eng). N Engl J Med. 2006;354(6):567–78. https://doi.org/10.1056/NEJMoa053422.

    Article  CAS  PubMed  Google Scholar 

  11. Pray L. Gleevec: the breakthrough in cancer treatment. Nature Education. 2008;1(1):37.

  12. Ang KK, et al. "Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma," (in eng). Cancer Res. 2002;62(24):7350–6.

    CAS  PubMed  Google Scholar 

  13. Trask DK, Wolf GT, Bradford CR, Fisher SG, Devaney K, Johnson M, Singleton T, Wicha M. "Expression of Bcl-2 family proteins in advanced laryngeal squamous cell carcinoma: correlation with response to chemotherapy and organ preservation," (in eng). Laryngoscope. 2002;112(4):638–44. https://doi.org/10.1097/00005537-200204000-00009.

    Article  CAS  PubMed  Google Scholar 

  14. Stransky N, et al. "The mutational landscape of head and neck squamous cell carcinoma," (in eng). Science. 2011;333(6046):1157–60. https://doi.org/10.1126/science.1208130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Agrawal N, et al. "Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1," (in eng). Science. 2011;333(6046):1154–7. https://doi.org/10.1126/science.1206923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang Z, Jensen MA, Zenklusen JC. "A practical guide to The Cancer Genome Atlas (TCGA)," (in eng). Methods Mol Biol. 2016;1418:111–41. https://doi.org/10.1007/978-1-4939-3578-9_6.

    Article  PubMed  Google Scholar 

  17. C. G. A. Network. "Comprehensive genomic characterization of head and neck squamous cell carcinomas," (in eng). Nature. 2015;517(7536):576–82. https://doi.org/10.1038/nature14129.

    Article  CAS  Google Scholar 

  18. • Campbell BR, et al. "The mutational landscape of early- and typical-onset oral tongue squamous cell carcinoma," (in eng). Cancer. 2021;127(4):544–53. https://doi.org/10.1002/cncr.33309 This manuscript highlights the potential for subsets of HNSCC with different mutational profiles than traditional older, smoking-associated HNSCC, with implications on precision medicine options.

    Article  CAS  PubMed  Google Scholar 

  19. Vermorken JB, et al. "Platinum-based chemotherapy plus cetuximab in head and neck cancer," (in eng). N Engl J Med. 2008;359(11):1116–27. https://doi.org/10.1056/NEJMoa0802656.

    Article  CAS  PubMed  Google Scholar 

  20. "Recruiting, Not yet recruiting Studies | Head and Neck Cancer." ClinicalTrials.gov. https://clinicaltrials.gov/ct2/results?recrs=ab&cond=Head+and+Neck+Cancer&term=&cntry=&state=&city=&dist= (accessed September 10, 2021.

  21. Conley BA, Doroshow JH. "Molecular analysis for therapy choice: NCI MATCH," (in eng). Semin Oncol. 2014;41(3):297–9. https://doi.org/10.1053/j.seminoncol.2014.05.002.

    Article  PubMed  Google Scholar 

  22. Flaherty KT, et al. "Molecular landscape and actionable alterations in a genomically guided cancer clinical trial: National Cancer Institute Molecular Analysis for Therapy Choice (NCI-MATCH)," (in eng). J Clin Oncol. 2020;38(33):3883–94. https://doi.org/10.1200/JCO.19.03010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. "Precision Medicine Cancer TrialNCI-ComboMATCH / EAY191." (accessed August 19, 2021.

  24. Rosenthal DI, et al. "Association of human papillomavirus and p16 status with outcomes in the IMCL-9815 phase III registration trial for patients with locoregionally advanced oropharyngeal squamous cell carcinoma of the head and neck treated with radiotherapy with or without cetuximab," (in eng). J Clin Oncol. 2016;34(12):1300–8. https://doi.org/10.1200/JCO.2015.62.5970.

    Article  CAS  PubMed  Google Scholar 

  25. •• Gillison ML, et al. "Radiotherapy plus cetuximab or cisplatin in human papillomavirus-positive oropharyngeal cancer (NRG Oncology RTOG 1016): a randomised, multicentre, non-inferiority trial," (in eng). Lancet. 2019;393(10166):40–50. https://doi.org/10.1016/S0140-6736(18)32779-X This study (along with its correlative study) demonstrates the potential limitations for targeted therapy in HNSCC, particularly in replacing standard of care options. It further highlights the need for further validation of precision medicine options in appropriate cohorts, and follow-up clinical trials.

    Article  CAS  PubMed  Google Scholar 

  26. •• Mehanna H, et al. "Radiotherapy plus cisplatin or cetuximab in low-risk human papillomavirus-positive oropharyngeal cancer (De-ESCALaTE HPV): an open-label randomised controlled phase 3 trial," (in eng). Lancet. 2019;393(10166):51–60. https://doi.org/10.1016/S0140-6736(18)32752-1 This study (along with its correlative study) demonstrates the potential limitations for targeted therapy in HNSCC, particularly in replacing standard of care options. It further highlights the need for further validation of precision medicine options in appropriate cohorts, and follow-up clinical trials.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. "List of cleared or approved companion diagnostic devices (in vitro and imaging tools)." US Food and Drug Administration. (accessed September 26, 2021.

  28. Bièche I, Kamal MLT, Christophe. Multigene sequencing for treatment selection: ESMO biomarker factsheet. Oncology Pro. (accessed August 29, 2021.

  29. Chau NG, et al. "Incorporation of next-generation sequencing into routine clinical care to direct treatment of head and neck squamous cell carcinoma," (in eng). Clin Cancer Res. 2016;22(12):2939–49. https://doi.org/10.1158/1078-0432.CCR-15-2314.

    Article  CAS  PubMed  Google Scholar 

  30. Stetson D, et al. Orthogonal comparison of four plasma NGS tests with tumor suggests technical factors are a major source of assay discordance. JCO Precision Oncology. 2019;3:1–9. https://doi.org/10.1200/po.18.00191.

    Article  PubMed  Google Scholar 

  31. Guan YF, Li GR, Wang RJ, Yi YT, Yang L, Jiang D, Zhang XP, Peng Y. “Application of next-generation sequencing in clinical oncology to advance personalized treatment of cancer,” (in eng). Chin J Cancer. 2012;31(10):463–70. https://doi.org/10.5732/cjc.012.10216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Turner NC, Reis-Filho JS. "Genetic heterogeneity and cancer drug resistance," (in eng). Lancet Oncol. 2012;13(4):e178–85. https://doi.org/10.1016/S1470-2045(11)70335-7.

    Article  PubMed  Google Scholar 

  33. Gerlinger M, et al. "Intratumor heterogeneity and branched evolution revealed by multiregion sequencing," (in eng). N Engl J Med. 2012;366(10):883–92. https://doi.org/10.1056/NEJMoa1113205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rasmussen JH, et al. "Intratumor heterogeneity of PD-L1 expression in head and neck squamous cell carcinoma," (in eng). Br J Cancer. 2019;120(10):1003–6. https://doi.org/10.1038/s41416-019-0449-y.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mroz EA, Rocco JW. "Intra-tumor heterogeneity in head and neck cancer and its clinical implications," (in eng). World J Otorhinolaryngol Head Neck Surg. 2016;2(2):60–7. https://doi.org/10.1016/j.wjorl.2016.05.007.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Puram SV, et al. "Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer," (in eng). Cell. 2017;171(7):1611–24.e24. https://doi.org/10.1016/j.cell.2017.10.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang M, Shen A, Ding J, Geng M. "Molecularly targeted cancer therapy: some lessons from the past decade," (in eng). Trends Pharmacol Sci. 2014;35(1):41–50. https://doi.org/10.1016/j.tips.2013.11.004.

    Article  CAS  PubMed  Google Scholar 

  38. Vasan N, Baselga J, Hyman DM. "A view on drug resistance in cancer," (in eng). Nature. 2019;575(7782):299–309. https://doi.org/10.1038/s41586-019-1730-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pisani P, et al. "Metastatic disease in head & neck oncology," (in eng). Acta Otorhinolaryngol Ital. 2020;40(SUPPL 1):S1–S86. https://doi.org/10.14639/0392-100X-suppl.1-40-2020.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Goldie JH, Coldman AJ. "A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate," (in eng). Cancer Treat Rep. 1979;63(11-12):1727–33.

    CAS  PubMed  Google Scholar 

  41. Meacham CE, Morrison SJ. "Tumour heterogeneity and cancer cell plasticity," (in eng). Nature. 2013;501(7467):328–37. https://doi.org/10.1038/nature12624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Juric D, et al. "Convergent loss of PTEN leads to clinical resistance to a PI(3)Kα inhibitor," (in eng). Nature. 2015;518(7538):240–4. https://doi.org/10.1038/nature13948.

    Article  CAS  PubMed  Google Scholar 

  43. Yoo GH, Moon J, LeBlanc M, Lonardo F, Urba S, Kim H, Hanna E, Tsue T, Valentino J, Ensley J, Wolf G. "A phase 2 trial of surgery with perioperative INGN 201 (Ad5CMV-p53) gene therapy followed by chemoradiotherapy for advanced, resectable squamous cell carcinoma of the oral cavity, oropharynx, hypopharynx, and larynx: report of the Southwest Oncology Group," (in eng). Arch Otolaryngol Head Neck Surg. 2009;135(9):869–74. https://doi.org/10.1001/archoto.2009.122.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. "Primary, adaptive, and acquired resistance to cancer immunotherapy," (in eng). Cell. 2017;168(4):707–23. https://doi.org/10.1016/j.cell.2017.01.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ferris RL, et al. "Nivolumab for recurrent squamous-cell carcinoma of the head and Neck," (in eng). N Engl J Med. 2016;375(19):1856–67. https://doi.org/10.1056/NEJMoa1602252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cohen EEW, et al. "Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study," (in eng). Lancet. 2019;393(10167):156–67. https://doi.org/10.1016/S0140-6736(18)31999-8.

    Article  CAS  PubMed  Google Scholar 

  47. Gubin MM, et al. "Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens," (in eng). Nature. 2014;515(7528):577–81. https://doi.org/10.1038/nature13988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S. "Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance," (in eng). Adv Immunol. 2000;74:181–273. https://doi.org/10.1016/s0065-2776(08)60911-6.

    Article  CAS  PubMed  Google Scholar 

  49. Routy B, et al. "Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors," (in eng). Science. 2018;359(6371):91–7. https://doi.org/10.1126/science.aan3706.

    Article  CAS  PubMed  Google Scholar 

  50. Kok VC. "Current understanding of the mechanisms underlying immune evasion from PD-1/PD-L1 immune checkpoint blockade in head and neck cancer," (in eng). Front Oncol. 2020;10:268. https://doi.org/10.3389/fonc.2020.00268.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Holsinger FC, Birkeland AC, Topf MC. "Precision head and neck surgery: robotics and surgical vision technology," (in eng). Curr Opin Otolaryngol Head Neck Surg. 2021;29(2):161–7. https://doi.org/10.1097/MOO.0000000000000706.

    Article  PubMed  Google Scholar 

  52. O'Malley BW, Weinstein GS, Snyder W, Hockstein NG. "Transoral robotic surgery (TORS) for base of tongue neoplasms," (in eng). Laryngoscope. 2006;116(8):1465–72. https://doi.org/10.1097/01.mlg.0000227184.90514.1a.

    Article  PubMed  Google Scholar 

  53. Weinstein GS, O'Malley BW Jr, Magnuson JS, Carroll WR, Olsen KD, Daio L, Moore EJ, Holsinger FC. "Transoral robotic surgery: a multicenter study to assess feasibility, safety, and surgical margins," (in eng). Laryngoscope. 2012;122(8):1701–7. https://doi.org/10.1002/lary.23294.

    Article  PubMed  Google Scholar 

  54. van Keulen S, et al. "The Sentinel Margin: Intraoperative," (in eng). Clin Cancer Res. 2019;25(15):4656–62. https://doi.org/10.1158/1078-0432.CCR-19-0319.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gorpas D, et al. "Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients," (in eng). Sci Rep. 2019;9(1):1187. https://doi.org/10.1038/s41598-018-37237-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Marsden M, et al. "Intraoperative margin assessment in oral and oropharyngeal cancer using label-free fluorescence lifetime imaging and machine learning," (in eng). IEEE Trans Biomed Eng. 2021;68(3):857–68. https://doi.org/10.1109/TBME.2020.3010480.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mahmood H, Shaban M, Rajpoot N, Khurram SA. "Artificial intelligence-based methods in head and neck cancer diagnosis: an overview," (in eng). Br J Cancer. 2021;124(12):1934–40. https://doi.org/10.1038/s41416-021-01386-x.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cheng G, et al. "A review on the advances and challenges of immunotherapy for head and neck cancer," (in eng). Cancer Cell Int. 2021;21(1):406. https://doi.org/10.1186/s12935-021-02024-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kulangara K, et al. "Clinical utility of the combined positive score for programmed death ligand-1 expression and the approval of pembrolizumab for treatment of gastric cancer," (in eng). Arch Pathol Lab Med. 2019;143(3):330–7. https://doi.org/10.5858/arpa.2018-0043-OA.

    Article  CAS  PubMed  Google Scholar 

  60. Kim HR, et al. "PD-L1 expression on immune cells, but not on tumor cells, is a favorable prognostic factor for head and neck cancer patients," (in eng). Sci Rep. 2016;6:36956. https://doi.org/10.1038/srep36956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Emancipator K, et al. "Comparing programmed death ligand 1 scores for predicting pembrolizumab efficacy in head and neck cancer," (in eng). Mod Pathol. 2021;34(3):532–41. https://doi.org/10.1038/s41379-020-00710-9.

    Article  CAS  PubMed  Google Scholar 

  62. Mandal R, et al. "The head and neck cancer immune landscape and its immunotherapeutic implications," (in eng). JCI Insight. 2016;1(17):e89829. https://doi.org/10.1172/jci.insight.89829.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kohrt HE, Colevas AD, Houot R, Weiskopf K, Goldstein MJ, Lund P, Mueller A, Sagiv-Barfi I, Marabelle A, Lira R, Troutner E, Richards L, Rajapaska A, Hebb J, Chester C, Waller E, Ostashko A, Weng WK, Chen L, et al. "Targeting CD137 enhances the efficacy of cetuximab," (in eng). J Clin Invest. 2014;124(6):2668–82. https://doi.org/10.1172/JCI73014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, Meyer L, Gress DM, Byrd DR, Winchester DP. "The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging," (in eng). CA Cancer J Clin. 2017;67(2):93–9. https://doi.org/10.3322/caac.21388.

    Article  PubMed  Google Scholar 

  65. da Cunha Santos G, Shepherd FA, Tsao MS. "EGFR mutations and lung cancer," (in eng). Annu Rev Pathol. 2011;6:49–69. https://doi.org/10.1146/annurev-pathol-011110-130206.

    Article  CAS  PubMed  Google Scholar 

  66. Luke JJ, Flaherty KT, Ribas A, Long GV. "Targeted agents and immunotherapies: optimizing outcomes in melanoma," (in eng). Nat Rev Clin Oncol. 2017;14(8):463–82. https://doi.org/10.1038/nrclinonc.2017.43.

    Article  CAS  PubMed  Google Scholar 

  67. Cabanillas ME, Ryder M, Jimenez C. "Targeted therapy for advanced thyroid cancer: kinase inhibitors and beyond," (in eng). Endocr Rev. 2019;40(6):1573–604. https://doi.org/10.1210/er.2019-00007.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Economopoulou P, de Bree R, Kotsantis I, Psyrri A. "Diagnostic tumor markers in head and neck squamous cell carcinoma (HNSCC) in the clinical setting," (in eng). Front Oncol. 2019;9:827. https://doi.org/10.3389/fonc.2019.00827.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lim SM, Cho SH, Hwang IG, Choi JW, Chang H, Ahn MJ, Park KU, Kim JW, Ko YH, Ahn HK, Cho BC, Nam BH, Chun SH, Hong JH, Kwon JH, Choi JG, Kang EJ, Yun T, Lee KW, et al. "Investigating the feasibility of targeted next-generation sequencing to guide the treatment of head and neck squamous cell carcinoma," (in eng). Cancer Res Treat. 2019;51(1):300–12. https://doi.org/10.4143/crt.2018.012.

    Article  CAS  PubMed  Google Scholar 

  70. "Radiation therapy with or without cisplatin in treating patients with stage III-IVA squamous cell carcinoma of the head and neck who have undergone surgery." ClinicalTrials.gov. https://www.clinicaltrials.gov/ct2/show/NCT02734537 (accessed September 29, 2021.

  71. Spector ME, et al. "Prognostic value of tumor-infiltrating lymphocytes in head and neck squamous cell carcinoma," (in eng). JAMA Otolaryngol Head Neck Surg. 2019;145(11):1012–9. https://doi.org/10.1001/jamaoto.2019.2427.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Heft Neal ME et al. Tumor-infiltrating lymphocytes in patients with advanced laryngeal cancer undergoing bioselection, (in eng). Otolaryngol Head Neck Surg. 2021;1945998211013765. https://doi.org/10.1177/01945998211013765.

  73. Hadler-Olsen E, Wirsing AM. "Tissue-infiltrating immune cells as prognostic markers in oral squamous cell carcinoma: a systematic review and meta-analysis," (in eng). Br J Cancer. 2019;120(7):714–27. https://doi.org/10.1038/s41416-019-0409-6.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Code Availability

Not applicable

Funding

Dr. Birkeland acknowledges funding from NIH K12 (5K12CA138464-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew C. Birkeland MD.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Head and Neck Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solis, R.N., Silverman, D.A. & Birkeland, A.C. Current Trends in Precision Medicine and Next-Generation Sequencing in Head and Neck Cancer. Curr. Treat. Options in Oncol. 23, 254–267 (2022). https://doi.org/10.1007/s11864-022-00942-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-022-00942-8

Keywords

Navigation