Skip to main content
Log in

Exploring mental representations for literal symbols using priming and comparison distance effects

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

Higher-level mathematics requires a connection between literal symbols (e.g., ‘x’) and their mental representations. The current study probes the nature of mental representations for literal symbols using both the priming distance effect, in which ease of comparing a target number to a fixed standard is a function of prime-target distance, and the comparison distance effect, in which ease of comparing two numbers depends on the distance between them. Can literal symbols that have been assigned magnitude access mental representations of quantity to produce distance effects? Forty participants completed number comparison tasks involving Arabic numerals and literal symbols, a training task, and a working memory task. While both distance effects were present with Arabic numerals, there was no evidence of either with literal symbols. Results suggest that literal symbols may not share the same mental representations of magnitude as other number formats or may access them differently. Additional research is needed to understand mental representations utilized in higher-level mathematics (e.g., algebra), which includes both Arabic numerals and literal symbols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The meaning of an Arabic numeral could be dependent on its place-value (e.g., 3, 30, 0.03). However, above we refer to the Arabic numeral as a whole, rather than the role of individual digits.

  2. For brevity, we do not report the CDE for the Arabic numerals only condition or pairwise comparisons for each distance related to error rate and reaction time. Results are available from the authors by request.

References

  • Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature Reviews Neuroscience, 9(4), 278–291. doi:10.1038/nrn2334.

    Article  Google Scholar 

  • Bardini, C., Radford, L., & Sabena, C. (2005). Struggling with variables, parameters, and indeterminate objects or, how to go insane in mathematics. In Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 129–136). Melbourne, Australia.

  • Bartelet, D., Vaessen, A., Blomert, L., & Ansari, D. (2014). What basic number processing measures in kindergarten explain unique variability in first-grade arithmetic proficiency? Journal of Experimental Child Psychology, 117, 12–28. doi:10.1016/j.jecp.2013.08.010.

    Article  Google Scholar 

  • Booth, L. (1999). Children’s difficulties in beginning algebra. Algebraic thinking, grades K-12: Readings from the NCTM’s school-based journals and other publications (pp. 299–307). National Council of Teachers of Mathematics: Reston, VA.

    Google Scholar 

  • Christou, K. P., & Vosniadou, S. (2005). How students interpret literal symbols in algebra: a conceptual change approach. In Proceedings of the XXVII Annual Conference of the Cognitive Science Society (Vol. Italy, pp. 453–458).

  • Cohen Kadosh, R., & Walsh, V. (2009). Numerical representation in the parietal lobes: abstract or not abstract? Behavioral and Brain Sciences, 32(3–4), 313. doi:10.1017/S0140525X09990938.

    Article  Google Scholar 

  • De Smedt, B., Verschaffel, L., & Ghesquière, P. (2009). The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology, 103(4), 469–479. doi:10.1016/j.jecp.2009.01.010.

    Article  Google Scholar 

  • Defever, E., Sasanguie, D., Gebuis, T., & Reynvoet, B. (2011). Children’s representation of symbolic and nonsymbolic magnitude examined with the priming paradigm. Journal of Experimental Child Psychology, 109(2), 174–186. doi:10.1016/j.jecp.2011.01.002.

    Article  Google Scholar 

  • Dehaene, S. (1997). The number sense: how the mind creates mathematics. New York: Oxford University Press.

    Google Scholar 

  • Dehaene, S., & Akhavein, R. (1995). Attention, automaticity, and levels of representation in number processing. Journal of Experimental Psychology. Learning, Memory, and Cognition, 21(2), 314–326.

    Article  Google Scholar 

  • Dehaene, S., Naccache, L., Le Clec’H, G., Koechlin, E., Mueller, M., Dehaene-Lambertz, G., Le Bihan, D. (1998). Imaging unconscious semantic priming. Nature, 395(6702), 597–600. doi:10.1038/26967.

  • den Heyer, K., & Briand, K. (1986). Priming single digit numbers: automatic spreading activation dissipates as a function of semantic distance. The American Journal of Psychology, 99(3), 315–340. doi:10.2307/1422488.

    Article  Google Scholar 

  • Fias, W., van Dijck, J.-P., & Gevers, W. (2011). Chapter 10—How is Number Associated with Space? The Role of Working Memory. In S. Dehaene & E. M. Brannon (Eds.), Space, Time and Number in the Brain (pp. 133–148). San Diego: Academic Press. Retrieved from http://www.sciencedirect.com/science/article/pii/B9780123859488000104.

  • Ganor-Stern, D., & Tzelgov, J. (2008). Across-notation automatic numerical processing. Journal of Experimental Psychology. Learning, Memory, and Cognition, 34(2), 430–437. doi:10.1037/0278-7393.34.2.430.

    Article  Google Scholar 

  • Holloway, I. D., & Ansari, D. (2008). Domain-specific and domain-general changes in children’s development of number comparison. Developmental Science, 11(5), 644–649. 10.1111/j.1467-7687.2008.00712.x.

  • Kieran, C. (2007). Learning and teaching of algebra at the middle school through college levels: building meaning for symbols and their manipulation. In F. K. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (2nd ed., pp. 707–762). Charlotte: Information Age Pub.

    Google Scholar 

  • Koechlin, E., Naccache, L., Block, E., & Dehaene, S. (1999). Primed numbers: exploring the modularity of numerical representations with masked and unmasked semantic priming. Journal of Experimental Psychology: Human Perception and Performance, 25(6), 1882–1905. doi:10.1037/0096-1523.25.6.1882.

    Google Scholar 

  • Küchemann, D. E. (1981). Algebra. Children’s understanding of mathematics: 11-16 (pp. 82–87). London: Athenaeum Press Ltd.

    Google Scholar 

  • Lyons, I. M., & Ansari, D. (2009). The cerebral basis of mapping nonsymbolic numerical quantities onto abstract symbols: an fmri training study. Journal of Cognitive Neuroscience, 21(9), 1720–1735.

    Article  Google Scholar 

  • McNeil, N. M., Weinberg, A., Hattikudur, S., Stephens, A. C., Asquith, P., Knuth, E. J., & Alibali, M. W. (2010). A is for apple: mnemonic symbols hinder the interpretation of algebraic expressions. Journal of Educational Psychology, 102(3), 625–634. doi:10.1037/a0019105.

    Article  Google Scholar 

  • Moyer, R. S., & Landauer, T. K. (1967). Time required for judgments of numerical inequality. Nature, 215(5109), 1519–1520.

    Article  Google Scholar 

  • Naccache, L., & Dehaene, S. (2001). Unconscious semantic priming extends to novel unseen stimuli. Cognition, 80(3), 215–229.

    Article  Google Scholar 

  • Nie, B., Cai, J., & Moyer, J. (2009). How a standards-based mathematics curriculum differs from a traditional curriculum: with a focus on intended treatments of the ideas of variable. ZDM—The International Journal on Mathematics Education, 41(6), 777–792. doi:10.1007/s11858-009-0197-1.

    Article  Google Scholar 

  • Peirce, J. W. (2007). PsychoPy—Psychophysics software in Python. Journal of Neuroscience Methods, 162(1–2), 8–13. doi:10.1016/j.jneumeth.2006.11.017.

    Article  Google Scholar 

  • Philipp, R. A. (1992). A study of algebraic variables: beyond the student-professor problem. Journal of Mathematical Behavior, 11(2), 161–176.

    Google Scholar 

  • Philipp, R. (1999). The many uses of algebraic variables. Algebraic thinking, grades K-12: Readings from the NCTM’s school-based journals and other publications (pp. 157–162). National Council of Teachers of Mathematics: Reston, VA.

    Google Scholar 

  • Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology, 83(2, Pt.1), 274–278. http://doi.org/10.1037/h0028573.

  • Reynvoet, B., Brysbaert, M., & Fias, W. (2002a). Semantic priming in number naming. The. Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 55(4), 1127–1139. doi:10.1080/02724980244000116.

    Article  Google Scholar 

  • Reynvoet, B., Caessens, B., & Brysbaert, M. (2002b). Automatic stimulus-response associations may be semantically mediated. Psychonomic Bulletin & Review, 9(1), 107–112.

    Article  Google Scholar 

  • Reynvoet, B., De Smedt, B., & Van den Bussche, E. (2009). Children’s representation of symbolic magnitude: the development of the priming distance effect. Journal of Experimental Child Psychology, 103(4), 480–489. doi:10.1016/j.jecp.2009.01.007.

    Article  Google Scholar 

  • Rosnick, P. (1982). Students’ symbolization processes in algebra. Retrieved July 29, 2014. http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=ED300230&site=ehost-live&scope=site.

  • Sasanguie, D., Göbel, S. M., Moll, K., Smets, K., & Reynvoet, B. (2013). Approximate number sense, symbolic number processing, or number–space mappings: what underlies mathematics achievement? Journal of Experimental Child Psychology, 114(3), 418–431. doi:10.1016/j.jecp.2012.10.012.

    Article  Google Scholar 

  • Schoenfeld, A. H., & Arcavi, A. (1999). On the meaning of variable. Algebraic thinking, grades K-12: Readings from the NCTM’s school-based journals and other publications (pp. 150–156). National Council of Teachers of Mathematics: Reston, VA.

    Google Scholar 

  • Trigueros, M., & Ursini, S. (2003). First-year undergraduates’ difficulties in working with different uses of variable. In Research in collegiate mathematics education, Volume 5 (pp. 1–29). Providence, RI: American Mathematical Society. Retrieved July 29, 2014, from http://books.google.com/books?id=foJJvXneF5sC&lpg=PA1&ots=xKHM66djYv&dq=ursini%2C%20sonia%2C%20algebra&lr&pg=PA1#v=onepage&q=ursini,%20sonia,%20algebra&f=false.

  • Unsworth, N., Redick, T. S., Heitz, R. P., Broadway, J. M., & Engle, R. W. (2009). Complex working memory span tasks and higher-order cognition: a latent-variable analysis of the relationship between processing and storage. Memory, 17(6), 635–654. doi:10.1080/09658210902998047.

    Article  Google Scholar 

  • Usiskin, Z. (1999). Conceptions of school algebra and uses of variables. Algebraic thinking, grades K-12: Readings from the NCTM’s school-based journals and other publications (pp. 7–13). National Council of Teachers of Mathematics: Reston, VA.

    Google Scholar 

  • Van Dijck, J.-P., & Fias, W. (2011). A working memory account for spatial–numerical associations. Cognition, 119(1), 114–119. doi:10.1016/j.cognition.2010.12.013.

    Article  Google Scholar 

  • Van Dijck, J.-P., Gevers, W., & Fias, W. (2009). Numbers are associated with different types of spatial information depending on the task. Cognition, 113(2), 248–253. doi:10.1016/j.cognition.2009.08.005.

    Article  Google Scholar 

  • Van Opstal, F., Gevers, W., De Moor, W., & Verguts, T. (2008). Dissecting the symbolic distance effect: comparison and priming effects in numerical and nonnumerical orders. Psychonomic Bulletin & Review, 15(2), 419–425. doi:10.3758/PBR.15.2.419.

    Article  Google Scholar 

  • Verguts, T., & Fias, W. (2004). Representation of number in animals and humans: a neural model. Journal of Cognitive Neuroscience, 16(9), 1493–1504. doi:10.1162/089892904256849.

    Article  Google Scholar 

  • Verguts, T., Fias, W., & Stevens, M. (2005). A model of exact small-number representation. Psychonomic Bulletin & Review, 12(1), 66–80.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Gigi Luk for her assistance with research design, analysis, and feedback on previous versions of this manuscript. We also thank Dr. Kurt Fischer, George Spencer, Janine de Novais, and three anonymous reviewers for feedback on prior versions of this manuscript. This research was funded by the Graduate Student Award from the Mind, Brain, Behavior Interfaculty Initiative at Harvard University to CP and the Harvard Graduate School of Education Dean’s Summer Fellowship to CP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Courtney Pollack.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pollack, C., Leon Guerrero, S. & Star, J.R. Exploring mental representations for literal symbols using priming and comparison distance effects. ZDM Mathematics Education 48, 291–303 (2016). https://doi.org/10.1007/s11858-015-0745-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-015-0745-9

Keywords

Navigation