Skip to main content
Log in

Pleasant extensions retaining algebraic structure, I

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

In the recent papers [1] and [2], we introduced some new techniques for constructing an extension of a probability-preserving system T: ℤd ↷ (X, µ) that enjoys certain desirable properties in connexion with the asymptotic behaviour of some related nonconventional ergodic averages.

The present paper is the first of two that explore various refinements and extensions of these ideas. This first part is dedicated to some much more general machinery for the construction of extensions that can be used to recover the results of [1, 2]. It also contains two relatively simple new applications of this machinery to the study of certain families of nonconventional averages, one in discrete and one in continuous time (convergence being a new result for the latter).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Austin, On the norm convergence of nonconventional ergodic averages, Ergodic Theory Dynam. Systems, 30 (2009), 321–338.

    Article  MathSciNet  Google Scholar 

  2. T. Austin, Deducing the multidimensional Szemerédi theorem from an infinitary removal lemma, J. Anal. Math. 111 (2010), 131–150.

    Article  MATH  MathSciNet  Google Scholar 

  3. T. Austin, Extensions of probability-preserving systems by measurably-varying homogeneous spaces and applications, Fund. Math. 210 (2010), 133–206.

    Article  MATH  MathSciNet  Google Scholar 

  4. T. Austin, Norm convergence of continuous-time polynomial multiple ergodic averages, Ergodic Theory Dynam. Systems, 32 (2012), 361–382.

    Article  MATH  MathSciNet  Google Scholar 

  5. T. Austin, Equidistribution of joinings under off-diagonal polynomial flows of nilpotent Lie groups, Ergodic Theory Dynam. Systems 33 (2013), 1667–1708.

    Article  MATH  MathSciNet  Google Scholar 

  6. T. Austin, Non-conventional ergodic averages for several commuting actions of an amenable group, J. Anal. Math., to appear; preprint at arXiv.org: 1309.4315.

  7. T. Austin, Pleasant extensions retaining algebraic structure, II, J. Anal. Math. to appear; available online at arXiv.org: 0910.0907.

  8. V. Bergelson, Weakly mixing PET, Ergodic Theory Dynam. Systems 7 (1987), 337–349.

    Article  MATH  MathSciNet  Google Scholar 

  9. V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden’s and Szemerédi’s theorems, J. Amer. Math. Soc. 9 (1996), 725–753.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. P. Conze and E. Lesigne, Théorèmes ergodiques pour des mesures diagonales, Bull. Soc. Math. France 112 (1984), 143–175.

    MATH  MathSciNet  Google Scholar 

  11. J. P. Conze and E. Lesigne, Sur un théorème ergodique pour des mesures diagonales, in Probabilit és, Univ. Rennes I, Rennes, 1988, pp. 1–31.

    Google Scholar 

  12. J. P. Conze and E. Lesigne, Sur un théorème ergodique pour des mesures diagonales, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), 491–493.

    MATH  MathSciNet  Google Scholar 

  13. T. de la Rue, Notes on Austin’s multiple ergodic theorem, unpublished, available online at arXiv.org: 0907.0538, 2009.

  14. R. Feres and A. Katok, Ergodic theory and dynamics of G-spaces (with special emphasis on rigidity phenomena), in Handbook of Dynamical Systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 665–763.

    Chapter  Google Scholar 

  15. D. H. Fremlin, Measure Theory, Volume 4: Topological Measure Theory, Torres Fremlin, Colchester, 2005.

    Google Scholar 

  16. H. Furstenberg, Ergodic behaviour of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Anal. Math. 31 (1977), 204–256.

    Article  MATH  MathSciNet  Google Scholar 

  17. H. Furstenberg and Y. Katznelson, An ergodic Szemerédi Theorem for commuting transformations, J. Anal. Math. 34 (1978), 275–291.

    Article  MATH  MathSciNet  Google Scholar 

  18. H. Furstenberg and B. Weiss, A mean ergodic theorem for \(\frac{1}{N}\sum\nolimits_{n = 1}^N {f({T^n}x)g({T^{{n^2}}}} x)\), in Convergence in Ergodic Theory and Probability, de Gruyter, Berlin, 1996, pp. 193–227.

    Google Scholar 

  19. E. Glasner, Ergodic Theory via Joinings, American Mathematical Society, Providence, RI, 2003.

    Book  MATH  Google Scholar 

  20. B. Host, Ergodic seminorms for commuting transformations and applications, Studia Math. 195 (2009), 31–49.

    Article  MATH  MathSciNet  Google Scholar 

  21. B. Host and B. Kra, Convergence of Conze-Lesigne averages, Ergodic Theory Dynam. Systems 21 (2001), 493–509.

    Article  MATH  MathSciNet  Google Scholar 

  22. B. Host and B. Kra, Convergence of polynomial ergodic averages, Israel J. Math. 149 (2005), 1–19.

    Article  MATH  MathSciNet  Google Scholar 

  23. B. Host and B. Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2) 161 (2005), 397–488.

    Article  MATH  MathSciNet  Google Scholar 

  24. O. Kallenberg, Foundations of Modern Probability, second edition, Springer-Verlag, New York, 2002.

    Book  MATH  Google Scholar 

  25. L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences. Wiley-Interscience [John Wiley & Sons], New York, 1974.

    MATH  Google Scholar 

  26. A. Leibman, Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold, Ergodic Theory Dynam. Systems, 25 (2005), 201–213.

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Lemańczyk and F. Parreau, Rokhlin extensions and lifting disjointness, Ergodic Theory Dynam. Systems, 23 (2005), 1525–1550.

    Article  Google Scholar 

  28. M. Lemańczyk, F. Parreau, and J. P. Thouvenot, Gaussian automorphisms whose ergodic self-joinings are Gaussian, Fund. Math. 164 (2000), 253–293.

    MATH  MathSciNet  Google Scholar 

  29. E. Lesigne, B. Rittaud, and T. de la Rue, Weak disjointness of measure-preserving dynamical systems, Ergodic Theory Dynam. Systems 23 (2003), 1173–1198.

    Article  MATH  MathSciNet  Google Scholar 

  30. D. Meiri, Generalized correlation sequences, Master’s thesis, Tel Aviv University, 1990; available online at http://taalul.com/David/Math/ma.pdf.

  31. T. Tao, Norm convergence of multiple ergodic averages for commuting transformations, Ergodic Theory and Dynam. Systems 28 (2008), 657–688.

    Article  MATH  MathSciNet  Google Scholar 

  32. M. Walsh, Norm convergence of nilpotent ergodic averages, Ann. of Math. (2) 175 (2012), 1667–1688.

    Article  MATH  MathSciNet  Google Scholar 

  33. Q. Zhang, On convergence of the averages (1/N N n=1 f 1(R n x)f 2(S n x)f 3(T n x), Monatsh. Math. 122 (1996), 275–300.

    Article  MATH  MathSciNet  Google Scholar 

  34. T. Ziegler, A non-conventional ergodic theorem for a nilsystem, Ergodic Theory Dynam. Systems 25 (2005), 1357–1370.

    Article  MATH  MathSciNet  Google Scholar 

  35. T. Ziegler, Universal characteristic factors and Furstenberg averages, J. Amer. Math. Soc. 20 (2007), 53–97.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Austin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Austin, T. Pleasant extensions retaining algebraic structure, I. JAMA 125, 1–36 (2015). https://doi.org/10.1007/s11854-015-0001-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-015-0001-9

Keywords

Navigation