Skip to main content

Advertisement

Log in

Expression of RAD51, BRCA1 and P53 does not correlate with cellular radiosensitivity of normal human fibroblasts

  • Original Article
  • Published:
Irish Journal of Medical Science Aims and scope Submit manuscript

Abstract

Aims

To evaluate the potential role of key DNA repair proteins in the sensitivity of normal human fibroblasts to ionising radiations.

Methods

Radiosensitivity of six human fibroblast strains established from skin biopsies of women who had undergone conservative breast surgery and received a curative breast conserving radiotherapy was measured by colony-formation assay. The expression level of RAD51, BRCA1 and p53 proteins were studied using western blot analysis.

Results

The six fibroblast strains represent a typical spectrum of normal human radiosensitivity with the surviving fraction measured for a dose of 3.5 Gy (SF3.5) ranging from 0.21 to 0.40. We found that these differences in cell survival did not correlate with the expression of RAD51, BRCA1 nor p53 in the tested normal human fibroblast strains.

Conclusions

We conclude that measurement of protein expression of the three tested genes (RAD51, BRCA1 and p53) did not reflect sensitivity of normal fibroblasts to IR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Andrei V, Elena A (2003) The role of p53 in the determining sensitivity to radiotherapy. Nature 3:117–129

    Google Scholar 

  2. Leong T, Chao M, Bassal S, McKay M (2003) Radiation-hypersensitive cancer patients do not manifest protein expression abnormalities in components of the nonhomologous end-joining (NHEJ) pathway. Br J Cancer 88:1251–1255

    Article  PubMed  CAS  Google Scholar 

  3. Kasten U, Plottner N, Johansen J, Overgaard J, Dikomey E (1999) Ku70/80 gene expression and DNA-dependent protein kinase (DNA-PK) activity do not correlate with double-strand break (dsb) repair capacity and cellular radiosensitivity in normal human fibroblasts. Br J Cancer 79(7/8):1037–1041

    Article  PubMed  CAS  Google Scholar 

  4. Bentzen S, Overgaard J (1994) Patient to patient variability in the expression of radiation-induced normal tissue injury. Semin Radiat Oncol 4:68–80

    Article  PubMed  Google Scholar 

  5. Turesson I, Nyman J, Holmberg E, Oden A (1996) Prognostic factors for acute and late skin reactions in radiotherapy patients. Int J Radiat Oncol Biol Phys 36:1065–1075

    Article  PubMed  CAS  Google Scholar 

  6. MaKay M, Peters L (1997) Genetic determinants of radiation response. Report on a symposium held at peter MacCallum Cancer Institute, Melbourne, Australia, 8 August 1996. Int J Radiat Biol 71:225–229

    Article  Google Scholar 

  7. Leong T, Whitty J, Keilar M et al (2000) Mutation analysis of BRCA1 and BRCA2 cancer predisposition genes in radiation hypersensitive cancer patients. Int J Radiat Oncol Biol Phys 48:959–965

    Article  PubMed  CAS  Google Scholar 

  8. Severin D, Leong T, Cassidy B et al (2001) Novel DNA sequence variants in the hHR21 DNA repair gene in radiosensitive cancer patients. Int J Radiat Oncol Biol Phys 50:1323–1331

    Article  PubMed  CAS  Google Scholar 

  9. Sak A, Stueben G, Groneberg M, Böcker W, Stuschke M (2005) Targeting of RAD51-dependent homologous recombination: implications for the radiation sensitivity of human lung cancer cell lines. Br J Cancer 92:1089–1097

    Article  PubMed  CAS  Google Scholar 

  10. Johnson R, Jasin M (2001) Double-strand break-induced homologous recombination in mammalian cells. Biochem Soc Trans 29:196–201

    Article  PubMed  CAS  Google Scholar 

  11. Jasin M (2002) Homologous repair of DNA damage and tumorigenesis: the BRCA connection. Oncogene 21:8981–8993

    Article  PubMed  CAS  Google Scholar 

  12. Thomas L, Luca P, Ashok R, Tom L (2003) Sequence fingerprints in BRCA2 and RAD51: implications for DNA repair and cancer. DNA Repair 2:1015–1028

    Article  Google Scholar 

  13. Sonoda E, Takada M, Yamashita Y, Morrison C, Takeda S (2001) Homologous DNA recombination in vertebrate cells. Proc Natl Acad Sci 98(15):8388–8394

    Article  PubMed  CAS  Google Scholar 

  14. Venkitaraman A (2002) Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108(2):171–182

    Article  PubMed  CAS  Google Scholar 

  15. Griffin C, Simpson P, Wilson C, Thacker J (2000) Mammalian recombination-repair genes XRCC2 and XRCC3 promote correct chromosome segregation. Nat Cell Biol 2(10):757–761

    Article  PubMed  CAS  Google Scholar 

  16. Takata M, Sasaki M, Sonada E et al (2000) The Rad51 paralog Rad 51B promotes homologous recombinational repair. Mol Cell Biol 20(17):6476–6482

    Article  PubMed  CAS  Google Scholar 

  17. Takata M, Sasaki M, Tachiri S et al (2001) Chromosome instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs. Mol Cell Biol 21(8):2858–2866

    Article  PubMed  CAS  Google Scholar 

  18. Patel K, Vu V, Lee H et al (1998) Involvement of Brca2 in DNA repair. Mol Cell 1:347–357

    Article  PubMed  CAS  Google Scholar 

  19. Connor F, Bertwiste D, Mee P et al (1997) Tumorigenesis and a DNA repair defect in mice with a truncating BRCA2 mutation. Nat Genet 17:423–430

    Article  PubMed  CAS  Google Scholar 

  20. Hakem R, de la Pompa J, Sirard C et al (1996) The tumour suppressor gene BRCA1 is required for embryonic cellular proliferation in the mouse. Cell 85:1009–1023

    Article  PubMed  CAS  Google Scholar 

  21. Suzuki A, de la Pompa J, Hakim R et al (1997) BRCA2 is required for embryonic cellular proliferation in the mouse. Genes Dev 11:1242–1252

    Article  PubMed  CAS  Google Scholar 

  22. Xu X, Qiao W, Linke S et al (2001) Genetic interactions between suppressors BRCA1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat Genet 28:266–271

    Article  PubMed  CAS  Google Scholar 

  23. Henning W, Ellen E, Biao W et al (2000) Dissociation of p53-mediated suppression of homologous recombination from G1/S cell cycle checkpoint control. Oncogene 19:632–639

    Article  Google Scholar 

  24. Duddenhöffer C, Rohaly G, Will K, Deppert W, Wiesmüller L (1998) Specific mismatch recognition in heteroduplex intermediates by p53 suggests a role in fidelity control of homologous recombination. Mol Cell Biol 18:5332–5342

    Google Scholar 

  25. Bertrand P, Rouillard D, Boulet A, Vealois C, Soussi T, Lopez B (1997) Increase of spontaneous intrachromosomal homologous recombination in mammalian cells expressing a mutant p53 protein. Oncogene 14:1117–1122

    Article  PubMed  CAS  Google Scholar 

  26. Mekeel K, Tang W, Kachnic Lluo C, Defrank J, Powell S (1997) Inactivation of p53 results in high rates of homologous recombination. Oncogene 14:1847–1857

    Article  PubMed  CAS  Google Scholar 

  27. Lane D (1992) p53, guardian of the genome. Nature 358:15–16

    Article  PubMed  CAS  Google Scholar 

  28. El-Awady R, Mahmoud M, Saleh E et al (2005) No correlation between radiosensitivity or DSB repair capacity of normal fibroblasts and acute normal tissue reaction after radiotherapy of breast cancer patients. Int J Rad Biol 81(7):501–508

    Article  PubMed  CAS  Google Scholar 

  29. El-Awady R, Dikomey E, Dahm-Daphi J (2003) Radiosensitivity of human tumour cells is correlated with the induction but not with the repair of DNA double-strand breaks. Br J Cancer 89:593–600

    Article  PubMed  CAS  Google Scholar 

  30. Jackson S (2002) Sensing and repairing DNA double strand breaks. Carcinogenesis 23(5):687–696

    Article  PubMed  CAS  Google Scholar 

  31. Fernet N, Hall J (2004) Genetic biomarkers of therapeutic radiation sensitivity. DNA Repair 3:1237–1243

    Article  PubMed  CAS  Google Scholar 

  32. Sonoda E, Sasaki M, Buerstedde J et al (1998) RAD51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J 17:598–608

    Article  PubMed  CAS  Google Scholar 

  33. Carlomagno F, Burnet N, Turesson I et al (2000) Comparison of DNA repair protein expression and activities between human fibroblast cell lines with different radiosensitivities. Int J Cancer 85(6):845–849

    Article  PubMed  CAS  Google Scholar 

  34. Raderschall E, Bazarov A, Cao J et al (2002) Formation of higher-order nuclear RAD51 structures are functionally linked to p21 expression and protection from DNA damage-induced apoptosis. J Cell Sci 115:153–164

    PubMed  CAS  Google Scholar 

  35. Djuzenova C, Mühl B, Schakowski R, Oppitz U, Flentje M (2004) Normal expression of DNA repair proteins, hMre11, Rad50 and Rad51 but protracted formation of Rad50 containing foci in X-irradiated skin fibroblasts from radiosensitive cancer patients. Br J Cancer 90:2356–2363

    PubMed  CAS  Google Scholar 

  36. Moynahan M, Cui T, Jasin M (2001) Homology-directed DNA repair, mitomycin-C resistance, and chromosome stability is restored with correction of a BRCA1 mutation. Cancer Res 61:4842–4850

    PubMed  CAS  Google Scholar 

  37. Li S, Ting N, Zheng L et al (2000) Functional link of BRCA1 and ataxia telangiestasia gene product in DNA damage response. Nature 406:210–215

    Article  PubMed  CAS  Google Scholar 

  38. Wang Y, Cortez D, Yazadi P, Neff N, Elledge S, Qin J (2000) BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 14:927–939

    PubMed  CAS  Google Scholar 

  39. Pierce L, Strawderman M, Narod S et al (2000) Effect of radiotherapy after breast-conserving treatment in women with breast cancer and germline BRCA1/2 mutations. J Clin Oncol 18:360–3369

    Google Scholar 

  40. Vogelstein B, Lane D, Levine A (2000) Surfing the p53 network. Nature 408:307–310

    Article  PubMed  CAS  Google Scholar 

  41. Graeber T, Peterson J, Tsai M, Monica K, Fomace A, Giaccia A (1994) Hypoxia induces accumulation of p53 protein, but activation of G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol Cell Biol 14:6264–6277

    PubMed  CAS  Google Scholar 

  42. Appella E, Anderson C (2001) Post translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268:2764–2772

    Article  PubMed  CAS  Google Scholar 

  43. Clifford B, Beljin M, Stark G, Taylor W (2003) G2 arrest in response to topoisomerase 11 inhibitors: the role of p53. Cancer Res 63:4074–4081

    PubMed  CAS  Google Scholar 

  44. Essmann F, Engels I, Totzke G, Schulze-Osthoff K, Jänicke R (2004) Apoptosis resistance of MCF7 breast carcinoma cells to ionizing radiation is independent of p53 and cell cycle control but caused by the lack of caspase-3 and a caffeine-inhibitable events. Cancer Res 64:7065–7072

    Article  PubMed  CAS  Google Scholar 

  45. Böhnke A, Westphal F, Schmidt A, El-Awady R, Dahm-Daphi J (2004) Role of p53 mutations, protein function and DNA damage for the radiosensitivity of human tumour cells. Int J Radiat Biol 80(1):53–63

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Y. Saleh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saleh, E.M.Y., El-Awady, R.A.E. Expression of RAD51, BRCA1 and P53 does not correlate with cellular radiosensitivity of normal human fibroblasts. Ir J Med Sci 180, 715–720 (2011). https://doi.org/10.1007/s11845-010-0554-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-010-0554-7

Keywords

Navigation