Skip to main content
Log in

Mechanism for the Improvement of the Mechanical Properties of FeCoCrNi+FeCoCrNiAl-Laminated HEA Fabricated by Laser Melting Deposition

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

FeCoCrNi+FeCoCrNiAl-laminated high-entropy alloy (HEA) was manufactured by laser melting deposition. The two adjacent HEA layers consisted of columnar grains with the orientation <001>//BD (building direction). However, the grains in the FeCoCrNiAl HEA were smaller than those in the FeCoCrNi HEA. The microstructure of the deposited HEA was dominated by the FCC phase, together with a low content of the BCC phase. After tensile tests, the number of columnar grains with the <011>//BD orientation increased appreciably. The difference in grain size, orientation of grain growth, physical properties of the two-phase structure, and the macroscopic interface between the adjacent HEAs gave rise to the concentration of dislocations and hindered plastic deformation during the tensile testing. As a result, the strength and toughness of the laminated HEA were effectively improved. However, the existence of columnar grains in the laminated HEA initiates and propagates cracking in the weak regions near the grain boundaries under tensile forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The parameters database, data and figures in this study can be provided for reasonable requests or future cooperation. Please address requests to the correspondence author, Prof. Jian Han.

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299. https://doi.org/10.1002/adem.200300567 (2004).

    Article  Google Scholar 

  2. J.W. Bae, J.M. Park, J. Moon, W.M. Choi, B.J. Lee, and H.S. Kim, J. Alloy. Compd. 781, 75. https://doi.org/10.1016/j.jallcom.2018.12.040 (2019).

    Article  Google Scholar 

  3. E.P. George, W.A. Curtin, and C.C. Tasan, Acta. Mater. 188, 435. https://doi.org/10.1016/j.actamat.2019.12.015 (2020).

    Article  Google Scholar 

  4. S.L. Wei, S.J. Kim, J.Y. Kang, Y. Zhang, Y.J. Zhang, T. Furuhara, E.S. Park, and C.C. Tasan, Nat. Mater. 19, 1175. https://doi.org/10.1038/s41563-020-0750-4 (2020).

    Article  Google Scholar 

  5. Y. Fu, J. Li, H. Luo, C.W. Cu, and X.G. Li, J. Mater. Sci. Technol. 80, 217. https://doi.org/10.1016/j.jmst.2020.11.044 (2021).

    Article  Google Scholar 

  6. C.Y. Lu, L.L. Niu, N.J. Chen, K. Jin, T.N. Yang, P.Y. Xiu, Y.W. Zhang, F. Gao, H.B. Bei, S. Shi, M.R. He, I.M. Robertson, W.J. Weber, and L.M. Wang, Nat. Commun. 7, 13564. https://doi.org/10.1038/ncomms13564 (2016).

    Article  Google Scholar 

  7. L. Liu, Q. Yu, Z. Wang, J. Ell, M.X. Huang, and R.O. Ritchie, Science. 368, 1347. https://doi.org/10.1126/science.aba9413 (2020).

    Article  Google Scholar 

  8. T. Yang, Y.L. Zhao, W.P. Li, C.Y. Yu, J.H. Luan, D.Y. Lin, L. Fan, Z.B. Jiao, W.H. Liu, X.J. Liu, J.J. Kai, J.C. Huang, and C.T. Liu, Science 369, 427. https://doi.org/10.1126/science.aal5166 (2020).

    Article  Google Scholar 

  9. J. Hu, Y.N. Shi, X. Sauvage, G. Sha, and K. Lu, Science. 355, 1292. https://doi.org/10.1126/science.aal5166 (2017).

    Article  Google Scholar 

  10. T. Wang, S. Li, H. Niu, C. Luo, X.B. Ma, Y.M. Liu, J.C. Han, and M.U. Bashir, J. Mater. Res. Technol. 9, 5840. https://doi.org/10.1016/j.jmrt.2020.03.111 (2020).

    Article  Google Scholar 

  11. D.Y. Li, G.H. Fan, X.X. Huang, D.J. Jensen, K.S. Miao, C. Xu, L. Geng, Y.B. Zhang, and T.B. Yu, Acta. Mater. 206, 116627. https://doi.org/10.1016/j.actamat.2021.116627 (2021).

    Article  Google Scholar 

  12. S.Q. Yuan, S.Y. Li, J.H. Zhu, and Y.L. Tang, Compos Part. B-Eng. 219, 108903. https://doi.org/10.1016/j.compositesb.2021.108903 (2021).

    Article  Google Scholar 

  13. J.J. Lewandowski, M. Seifi, Annu. Rev. Mater. Res. 46, 14.1. https://doi.org/10.1146/annurev-matsci-070115-032024 (2016).

  14. C.L. Tan, Y.X. Chew, R.X. Duan, F. Weng, S. Sui, F.L. Ng, Z.L. Du, and G.J. Bi, Mater. Res. Lett. 9, 291. https://doi.org/10.1080/21663831.2021.1904299 (2021).

    Article  Google Scholar 

  15. P. Kürnsteiner, M.B. Wilms, A. Weisheit, B. Gault, E.A. Jägle, and D. Raabe, Nature 582, 515. https://doi.org/10.1038/s41586-020-2409-3 (2020).

    Article  Google Scholar 

  16. C.J. Han, Q.H. Fang, Y.S. Shi, S.B. Tor, C.K. Chua, and K. Zhou, Adv. Mater. 32, 1903855. https://doi.org/10.1002/adma.201903855 (2020).

    Article  Google Scholar 

  17. A.O. Moghaddam, N.A. Shaburova, M.N. Samodurova, A. Abdollahzadeh, and E.A. Trofimov, J. Mater. Sci. Technol. 77, 131. https://doi.org/10.1016/j.jmst.2020.11.029 (2021).

    Article  Google Scholar 

  18. S. Guan, D. Wan, K. Solberg, F. Berto, T. Welo, T.M. Yue, and K.C. Chan, Scr. Mater. 183, 133. https://doi.org/10.1016/j.scriptamat.2020.03.032 (2020).

    Article  Google Scholar 

  19. H. Dobbelstein, E.L. Gurevich, E.P. George, A. Ostendorf, and G. Laplanche, Addit. Manuf. 25, 252. https://doi.org/10.1016/j.addma.2018.10.042 (2019).

    Article  Google Scholar 

  20. Y.C. Cai, L.S. Zhu, Y. Cui, and J. Han, Mater Lett. 289, 129445. https://doi.org/10.1016/j.matlet.2021.129445 (2021).

    Article  Google Scholar 

  21. Y.C. Cai, X.P. Li, H.B. Xia, Y. Cui, S.M. Manladan, L.S. Zhu, M.D. Shan, D. Sun, T. Wang, X. Lv, and J. Han, J Manuf. Process. 72, 294. https://doi.org/10.1016/j.jmapro.2021.10.022 (2021).

    Article  Google Scholar 

  22. J.Y. He, W.H. Liu, H. Wang, Y. Wu, and Z.P. Lu, Acta. Mater. 62, 105. https://doi.org/10.1016/j.actamat.2013.09.037 (2014).

    Article  Google Scholar 

  23. M.X. Zhang, P. Kelly, M. Easton, and J. Taylor, Acta. Mater. 53, 1427. https://doi.org/10.1016/j.actamat.2004.11.037 (2005).

    Article  Google Scholar 

  24. M.A. Easton, and D.H. StJohn, Acta. Mater. 49, 1867. https://doi.org/10.1016/S1359-6454(00)00368-2 (2001).

    Article  Google Scholar 

  25. W. Wang, P.D. Lee, and M. McLean, Acta. Mater. 51, 2971. https://doi.org/10.1016/S1359-6454(03)00110-1 (2003).

    Article  Google Scholar 

  26. J. Wang, Z.X. Pan, Y.F. Wang, L. Wang, L.H. Su, D. Cuiuri, Y.H. Zhao, and H.J. Li, Add Manuf. 34, 101240. https://doi.org/10.1016/j.addma.2020.101240 (2020).

    Article  Google Scholar 

  27. G.M. Zheng, B. Tang, Q. Zhou, X.N. Mao, and R. Dang, Metals. 10, 121. https://doi.org/10.3390/met10010121 (2020).

    Article  Google Scholar 

  28. Z.F. Yan, D.H. Wang, and X.L. He, Mat. Sci. Eng. A. 723, 212. https://doi.org/10.1016/j.msea.2018.03.023 (2018).

    Article  Google Scholar 

  29. Y.C. Cai, L.S. Zhu, Y. Cui, K.P. Geng, S.M. Manladan, Z. Luo, and J. Han, Mater. Charact. 159, 110037. https://doi.org/10.1016/j.matchar.2019.110037 (2020).

    Article  Google Scholar 

  30. M. Rappaz, S.A. David, J.M. Vitek, and L.A. Boatner, Metall. Trans. A. 20, 1125. https://doi.org/10.1007/BF02650147 (1989).

    Article  Google Scholar 

  31. M. Rappaz, and C.A. Gandin, Acta. Metall. Mater. 41, 345. https://doi.org/10.1016/0956-7151(93)90065-Z (1993).

    Article  Google Scholar 

  32. M.S. Pham, B. Dovgyy, P.A. Hooper, C.M. Gourlay, and A. Piglione, Nat. Commun. 11, 749. https://doi.org/10.1038/s41467-020-14453-3 (2020).

    Article  Google Scholar 

  33. Y.K. Shon, S.S. Joshi, S. Katakam, R.S. Rajamure, and N.B. Dahotre, Mater. Lett. 142, 122. https://doi.org/10.1016/j.matlet.2014.11.161 (2015).

    Article  Google Scholar 

  34. C. Li, J.C. Li, M. Zhao, and Q. Jiang, J Alloy Compd. 504, S515. https://doi.org/10.1016/j.jallcom.2010.03.111 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the relevant device support from Tianjin Sino-German University of Applied Sciences. This research was supported by National Nature Science Foundation of Tianjin (Grant 19JCZDJC39000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Han.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Cui, Y., Manladan, S.M. et al. Mechanism for the Improvement of the Mechanical Properties of FeCoCrNi+FeCoCrNiAl-Laminated HEA Fabricated by Laser Melting Deposition. JOM 74, 2860–2870 (2022). https://doi.org/10.1007/s11837-022-05263-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05263-7

Navigation