Skip to main content
Log in

Microstructure Formation and Mechanical Properties of a Wire-Arc Additive Manufactured Magnesium Alloy

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Wire-arc additive manufacturing offers great advantages in terms of design freedom with respect to conventional manufacturing processes. This design freedom translates into additional options for light-weighting, further raised by use of light-weight materials such as magnesium. Here, Cold Metal Transfer is used to manufacture specimens using the magnesium AZ61A alloy. The fabricated deposit has been characterized in-depth in terms of microstructure and mechanical properties. A homogeneous and fine-grained microstructure was observed with no variations in hardness throughout the specimen height. Analyzed second phases are fine due to the high process-intrinsic cooling rates. A weak basal-fiber texture was observed, which is more pronounced in the fusion zone and becomes diffuse in the intralayer region. This texture translates into a weak mechanical anisotropy. The assessment of the mechanical properties suggests values between typical cast and wrought material properties. This study demonstrates the feasibility of processing magnesium alloys by wire-arc additive manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N.P. Papenberg, S. Gneiger, I. Weißensteiner, and P.J. Uggowitzer, Materials (Basel) 13, 1. (2020).

    Article  Google Scholar 

  2. L. Zhu, N. Li, and P.R.N. Childs, Propuls. Power Res. 7, 103. (2018).

    Article  Google Scholar 

  3. V. Manakari, G. Parande, and M. Gupta, Metals (Basel) 7, 2. (2017).

    Article  Google Scholar 

  4. D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann, Acta Mater. 117, 371. (2016).

    Article  Google Scholar 

  5. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang, Prog. Mater. Sci. 92, 112. (2018).

    Article  Google Scholar 

  6. D. Ding, Z. Pan, D. Cuiuri, and H. Li, Int. J. Adv. Manuf. Technol. 81, 465. (2015).

    Article  Google Scholar 

  7. B. Wu, Z. Pan, D. Ding, D. Cuiuri, H. Li, J. Xu, and J. Norrish, J. Manuf. Process. 35, 127. (2018).

    Article  Google Scholar 

  8. C.R. Cunningham, J.M. Flynn, A. Shokrani, V. Dhokia, and S.T. Newman, Addit. Manuf. 22, 672. (2018).

    Google Scholar 

  9. W. Zhang, L. Wang, Z. Feng, and Y. Chen, Opt. Int. J. Light Electron Opt. 207, 163842. (2020).

    Article  Google Scholar 

  10. T. A. Rodrigues, V. Duarte, R. M. Miranda, Materials (Basel), 12, 1121. (2019).

    Article  Google Scholar 

  11. M. Froend, V. Ventzke, F. Dorn, N. Kashaev, B. Klusemann, and J. Enz, Mater. Sci. Eng. A 772, 138635. (2020).

    Article  Google Scholar 

  12. T. Klein, and M. Schnall, Int. J. Adv. Manuf. Technol. 108, 235. (2020).

    Article  Google Scholar 

  13. W. Ou, T. Mukherjee, G.L. Knapp, Y. Wei, and T. DebRoy, Int. J. Heat Mass Transf. 127, 1084. (2018).

    Article  Google Scholar 

  14. K. Oyama, S. Diplas, M. M’hamdi, A.E. Gunnæs, and A.S. Azar, Addit. Manuf. 26, 180. (2019).

    Google Scholar 

  15. M. Graf, A. Hälsig, K. Höfer, B. Awiszus, and P. Mayr, Metals (Basel) 8, 1009. (2018).

    Article  Google Scholar 

  16. B. Song, X. Zhao, S. Li, C. Han, Q. Wei, S. Wen, J. Liu, and Y. Shi, Front. Mech. Eng. 10, 111. (2015).

    Article  Google Scholar 

  17. D.H. StJohn, M. Qian, M.A. Easton, and P. Cao, Acta Mater. 59, 4907. (2011).

    Article  Google Scholar 

  18. M. Bermingham, D. StJohn, M. Easton, L. Yuan, and M. Dargusch, JOM 72, 1065. (2020).

    Article  Google Scholar 

  19. A. Prasad, L. Yuan, P. Lee, M. Patel, D. Qiu, M. Easton, and D. StJohn, Acta Mater. 195, 392. (2020).

    Article  Google Scholar 

  20. J. Wang, X. Lin, J. Wang, H. Yang, Y. Zhou, C. Wang, Q. Li, and W. Huang, J. Alloys Compd. 768, 97. (2018).

    Article  Google Scholar 

  21. Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu, and S.B. Tor, Mater. Des. 139, 565. (2018).

    Article  Google Scholar 

  22. B.E. Carroll, T.A. Palmer, and A.M. Beese, Acta Mater. 87, 309. (2015).

    Article  Google Scholar 

  23. J.V. Gordon, C.V. Haden, H.F. Nied, R.P. Vinci, and D.G. Harlow, Mater. Sci. Eng. A 724, 431. (2018).

    Article  Google Scholar 

  24. J. Ge, J. Lin, Y. Chen, Y. Lei, and H. Fu, J. Alloys Compd. 748, 911. (2018).

    Article  Google Scholar 

  25. P. Kyvelou, H. Slack, D. Daskalaki Mountanou, M.A. Wadee, T. Ben Britton, C. Buchanan, and L. Gardner, Mater Des. 192, 108675. (2020).

    Article  Google Scholar 

  26. V. Laghi, M. Palermo, L. Tonelli, G. Gasparini, L. Ceschini, and T. Trombetti, Int. J. Adv. Manuf. Technol. 106, 3693. (2020).

    Article  Google Scholar 

  27. X. Yang, J. Liu, Z. Wang, X. Lin, F. Liu, W. Huang, and E. Liang, Mater. Sci. Eng. A 774, 138942. (2020).

    Article  Google Scholar 

  28. J. Gu, M. Gao, S. Yang, J. Bai, Y. Zhai, and J. Ding, Mater. Des. 186, 108357. (2020).

    Article  Google Scholar 

  29. A. Horgar, H. Fostervoll, B. Nyhus, X. Ren, M. Eriksson, and O.M. Akselsen, J. Mater. Process. Technol. 259, 68. (2018).

    Article  Google Scholar 

  30. E.M. Ryan, T.J. Sabin, J.F. Watts, and M.J. Whiting, J. Mater. Process. Technol. 262, 577. (2018).

    Article  Google Scholar 

  31. P. Morais, B. Gomes, P. Santos, M. Gomes, R. Gradinger, M. Schnall, S. Bozorgi, T. Klein, D. Fleischhacker, P. Warzcok, A. Falahati, and E. Kozeschnik, Materials (Basel) 13, 1610. (2020).

    Article  Google Scholar 

  32. M.J. Bermingham, D. Kent, H. Zhan, D.H. Stjohn, and M.S. Dargusch, Acta Mater. 91, 289. (2015).

    Article  Google Scholar 

  33. A. Ho, H. Zhao, J.W. Fellowes, F. Martina, A.E. Davis, and P.B. Prangnell, Acta Mater. 166, 306. (2019).

    Article  Google Scholar 

  34. T.A. Rodrigues, V. Duarte, J.A. Avila, T.G. Santos, R.M. Miranda, and J.P. Oliveira, Addit. Manuf. 27, 440. (2019).

    Google Scholar 

  35. L. Wang, J. Xue, and Q. Wang, Mater. Sci. Eng. A 751, 183. (2019).

    Article  Google Scholar 

  36. H. Takagi, H. Sasahara, T. Abe, H. Sannomiya, S. Nishiyama, S. Ohta, and K. Nakamura, Addit. Manuf. 24, 498. (2018).

    Google Scholar 

  37. S. Gneiger, J.A. Österreicher, A.R. Arnoldt, A. Birgmann, and M. Fehlbier, Metals (Basel) 10, 778. (2020).

    Article  Google Scholar 

  38. J. Bi, J. Shen, S. Hu, Y. Zhen, F. Yin, and X. Bu, Mater. Lett. 276, 10. (2020).

    Article  Google Scholar 

  39. S. Selvi, A. Vishvaksenan, and E. Rajasekar, Def. Technol. 14, 28. (2018).

    Article  Google Scholar 

  40. X. Fang, L. Zhang, G. Chen, X. Dang, K. Huang, L. Wang, and B. Lu, Materials (Basel) 11, 2075. (2018).

    Article  Google Scholar 

  41. J.S. Panchagnula, and S. Simhambhatla, Robot. Comput. Integr. Manuf. 49, 194. (2018).

    Article  Google Scholar 

  42. S. Cadiou, M. Courtois, M. Carin, W. Berckmans, and P. Le Masson, Addit. Manuf. 36, 101541. (2020).

    Google Scholar 

  43. R. Snell, S. Tammas-Williams, L. Chechik, A. Lyle, E. Hernández-Nava, C. Boig, G. Panoutsos, and I. Todd, JOM 72, 101. (2020).

    Article  Google Scholar 

  44. C. Taltavull, B. Torres, A.J. Lopez, P. Rodrigo, E. Otero, and J. Rams, Mater. Lett. 85, 98. (2012).

    Article  Google Scholar 

  45. L. Tang, F. Jiang, J. Teng, D. Fu, and H. Zhang, J. Alloys Compd. 806, 292. (2019).

    Article  Google Scholar 

  46. T. Yuan, Z. Yu, S. Chen, M. Xu, and X. Jiang, J. Manuf. Process. 49, 456. (2020).

    Article  Google Scholar 

  47. J. Zapletal, P. Doležal, P. Gejdoš, and M. Horynová, Acta Metall. Slovaca 18, 92. (2012).

    Google Scholar 

  48. P. Liang, T. Tarfa, J.A. Robinson, S. Wagner, P. Ochin, M.G. Harmelin, H.J. Seifert, H.L. Lukas, and F. Aldinger, Thermochim. Acta 314, 87. (1998).

    Article  Google Scholar 

  49. Y. Guo, H. Pan, L. Ren, and G. Quan, Mater. Lett. 247, 4. (2019).

    Article  Google Scholar 

  50. A.A. Antonysamy, J. Meyer, and P.B. Prangnell, Mater. Charact. 84, 153. (2013).

    Article  Google Scholar 

  51. M.J. Bermingham, D.H. StJohn, J. Krynen, S. Tedman-Jones, and M.S. Dargusch, Acta Mater. 168, 261. (2019).

    Article  Google Scholar 

  52. Y. Ali, D. Qiu, B. Jiang, F. Pan, and M.X. Zhang, J. Alloys Compd. 619, 639. (2015).

    Article  Google Scholar 

  53. D. Zhang, D. Qiu, M.A. Gibson, Y. Zheng, H.L. Fraser, D.H. StJohn, and M.A. Easton, Nature 576, 91. (2019).

    Article  Google Scholar 

  54. M. Simonelli, D.G. McCartney, P. Barriobero-Vila, N.T. Aboulkhair, Y.Y. Tse, A. Clare, and R. Hague, Metall. Mater. Trans. A 51, 2444. (2020).

    Article  Google Scholar 

  55. D.H. StJohn, M. Qian, M.A. Easton, P. Cao, and Z. Hildebrand, Metall. Mater. Trans. A 36, 1669. (2005).

    Article  Google Scholar 

  56. A.N. Chamos, S.G. Pantelakis, G.N. Haidemenopoulos, and E. Kamoutsi, Fatigue Fract. Eng. Mater. Struct. 31, 812. (2008).

    Article  Google Scholar 

  57. H. Yu, Y. Xin, M. Wang, and Q. Liu, J. Mater. Sci. Technol. 34, 248. (2018).

    Article  Google Scholar 

  58. P. P. Indurkar, S. Baweja, R. Perez, and S. P. Joshi, Int. J. Plast., 102762 (2020).

  59. J. Guo, Y. Zhou, C. Liu, Q. Wu, X. Chen, and J. Lu, Materials (Basel) 9, 823. (2016).

    Article  Google Scholar 

  60. N.A. Zumdick, L. Jauer, L.C. Kersting, T.N. Kutz, J.H. Schleifenbaum, and D. Zander, Mater. Charact. 147, 384. (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the LKR’s staff members for their continuous support during materials processing and subsequent analyses. This research has been funded by the Austrian Ministry for Transport, Innovation and Technology (BMVIT) within the framework ASAP – Austrian Space Applications Program in the project “Element 12” (FFG project no. 873660).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Klein.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflicts of interest that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, T., Arnoldt, A., Schnall, M. et al. Microstructure Formation and Mechanical Properties of a Wire-Arc Additive Manufactured Magnesium Alloy. JOM 73, 1126–1134 (2021). https://doi.org/10.1007/s11837-021-04567-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04567-4

Navigation