Skip to main content
Log in

Fundamentals of Silico-Ferrite of Calcium and Aluminum (SFCA) and SFCA-I Iron Ore Sinter Bonding Phase Formation: Effects of MgO on Phase Formation During Heating

  • Sintering of Oxides and Concentrates
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effect of MgO on the stability, concentrations and formation mechanisms of silico-ferrite of calcium and aluminum (SFCA and SFCA-I) iron ore sinter bonding phases during heating in synthetic mixtures was investigated using in situ x-ray diffraction. The novelty of this study is in the intricate detail in which the formation mechanisms of the SFCA-I and SFCA phases are characterized, and the observation of the effects of MgO addition on intermediate phases. For example, the significant mechanistic effect of increasing MgO content is the lack of additional SFCA formed after SFCA-I decomposition, with additional magnesioferrite spinel being formed instead. In MgO-free mixtures, the decomposition of SFCA-I typically results in a significant increase in SFCA concentration. Through the results of phase equilibria experiments, this study also provides evidence that the SFCA-I structure accommodates more Mg2+ than the SFCA structure, which is consistent with evidence that the SFCA-I structure contains a higher amount of Fe2+ than SFCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.M.F. Clout and J.R. Manuel, Mineralogical, chemical and physical characteristics of iron ore.Iron Ore: Mineralogy, Processing and Environmental Sustainability, ed. L. Lu (Cambridge, UK: Woodhead, 2015), p. 45.

    Chapter  Google Scholar 

  2. J.M.F. Clout and J.R. Manuel, Proceedings of the Iron Ore Conference 2017, The Australasian Institute of Mining and Metallurgy Publication Series, July 2017, p. 567.

  3. M.I. Pownceby, S. Hapugoda, J.R. Manuel, N.A.S. Webster, and C.M. MacRae, Miner. Eng. 143, 106022 (2019).

    Article  Google Scholar 

  4. L. Lu and O. Ishiyama, Iron ore sintering.Iron Ore: Mineralogy, Processing and Environmental Sustainability, ed. L. Lu (Cambridge, UK: Woodhead, 2015), p. 393.

    Google Scholar 

  5. D. Fernández-González, I. Ruiz-Bustinza, J. Mochón, C. González-Gasca, and L.F. Verdeja, Min. Proc. Ext. Met. Rev. 38, 215 (2017).

    Article  Google Scholar 

  6. F. Matsuno, Tetsu-to-Hagané 64, 1499 (1978).

    Article  Google Scholar 

  7. D. Fernández-González, I. Ruiz-Bustinza, J. Mochón, C. González-Gasca, and L.F. Verdeja, Min. Proc. Ext. Met. Rev. 38, 254 (2017).

    Article  Google Scholar 

  8. I. Tonžetić and A. Dippenaar, Miner. Eng. 24, 1258 (2011).

    Article  Google Scholar 

  9. S. Nicol, J. Chen, M.I. Pownceby, and N.A.S. Webster, ISIJ Int. 58, 2157 (2018).

    Article  Google Scholar 

  10. N.A.S. Webster, M.I. Pownceby, I.C. Madsen, and J.A. Kimpton, Metall. Mater. Trans. B 43, 1344 (2012).

    Article  Google Scholar 

  11. N.V.Y. Scarlett, M.I. Pownceby, I.C. Madsen, and A. Christensen, Metall. Mater. Trans. B 35, 929 (2004).

    Article  Google Scholar 

  12. N.V.Y. Scarlett, I.C. Madsen, M.I. Pownceby, and A.N. Christensen, J. Appl. Crystallogr. 37, 362 (2004).

    Article  Google Scholar 

  13. N.A.S. Webster, M.I. Pownceby, I.C. Madsen, and J.A. Kimpton, ISIJ Int. 53, 774 (2013).

    Article  Google Scholar 

  14. N.A.S. Webster, M.I. Pownceby, and I.C. Madsen, ISIJ Int. 53, 1334 (2013).

    Article  Google Scholar 

  15. N.A.S. Webster, M.I. Pownceby, I.C. Madsen, A.J. Studer, J.R. Manuel, and J.A. Kimpton, Metall. Mater. Trans. B 45, 2097 (2014).

    Article  Google Scholar 

  16. N.A.S. Webster, M.I. Pownceby, I.C. Madsen, A.J. Studer, and J.A. Kimpton, Powder Diffr. 29, S54 (2014).

    Article  Google Scholar 

  17. N.A.S. Webster, D.P. O’Dea, B.G. Ellis, and M.I. Pownceby, ISIJ Int. 57, 41 (2017).

    Article  Google Scholar 

  18. N.A.S. Webster, J.G. Churchill, F. Tufaile, M.I. Pownceby, J.R. Manuel, and J.A. Kimpton, ISIJ Int. 56, 1715 (2016).

    Article  Google Scholar 

  19. N.A.S. Webster, M.I. Pownceby, and R. Pattel, Powder Diffr. 32, S85 (2017).

    Article  Google Scholar 

  20. N.A.S. Webster, M.I. Pownceby, R. Pattel, J.R. Manuel, and J.A. Kimpton, ISIJ Int. 59, 263 (2019).

    Article  Google Scholar 

  21. N.A.S. Webster, M.I. Pownceby, R. Pattel, J.R. Manuel, and J.A. Kimpton, ISIJ Int. 59, 1007 (2019).

    Article  Google Scholar 

  22. U.S. Yadav, B.D. Pandey, B.K. Das, and D.N. Jena, Ironmak. Steelmak. 29, 91 (2002).

    Article  Google Scholar 

  23. C.E. Loo, I.C. Mackey, and B.M. England, T. I. Min. Metall. C 105, 175 (1996).

    Google Scholar 

  24. T.R.C. Patrick and M.I. Pownceby, Metall. Mater. Trans. B 32, 1 (2001).

    Google Scholar 

  25. K. Wallwork, B. Kennedy, and D. Wang, AIP Conf. Proc. 879, 879 (2007).

    Article  Google Scholar 

  26. L.-H. Hsieh and J.A. Whiteman, ISIJ Int. 29, 24 (1989).

    Article  Google Scholar 

  27. R. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Article  Google Scholar 

  28. S.C. Panigraphy, P. Verstraeten, and J. Dilewijns, Metall. Mater. Trans. B 15, 23 (1984).

    Article  Google Scholar 

  29. T. Umadevi, K. Nelson, P.C. Mahapatra, M. Prabhu, and M. Ranjan, Ironmak. Steelmak. 36, 515 (2009).

    Article  Google Scholar 

  30. M.K. Kalenga and A.M. Garbers-Graig, J. S. Afr. Inst. Min. Metall. 110, 447 (2010).

    Google Scholar 

  31. J.M.F. Clout and J.R. Manuel, Powder Technol. 130, 393 (2003).

    Article  Google Scholar 

  32. W.G. Mumme, J.M.F. Clout, and R.W. Gable, Neues Jahrb. Miner. Abh. 173, 93 (1998).

    Google Scholar 

Download references

Acknowledgements

This research was undertaken on the powder diffraction beamline (10BM1) at the Australian Synchrotron (part of ANSTO), Victoria, Australia, under beamtime award AS132/PD/6321. Dr Bree Morgan (formerly CSIRO Mineral Resources and now at the University of Sydney) is thanked for assistance with data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan A. S. Webster.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webster, N.A.S., Pownceby, M.I., Manuel, J.R. et al. Fundamentals of Silico-Ferrite of Calcium and Aluminum (SFCA) and SFCA-I Iron Ore Sinter Bonding Phase Formation: Effects of MgO on Phase Formation During Heating. JOM 73, 299–305 (2021). https://doi.org/10.1007/s11837-020-04430-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04430-y

Navigation