Skip to main content
Log in

Tantalum Bone Implants Printed by Selective Electron Beam Manufacturing (SEBM) and Their Clinical Applications

  • The 2nd Asia-Pacific International Conference on Additive Manufacturing (APICAM 2019)
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Tantalum is a refractory metal with a melting point of 2996°C but it offers outstanding biocompatibility for bone implant applications. In this study, the selective electron beam melting (SEBM) process was used for the first time to fabricate both dense and fine lattice tantalum structures. The use of 90-ppm-oxygen Ta powder for SEBM ensured excellent ductility of the as-printed fine Ta lattice implants with strut diameter of just 350 μm. The as-printed dense Ta samples (99.90%) achieved tensile ductility of 45% compared with the minimum requirement of 25% by ISO 13782 and the reported 2% fabricated by SLM using 1800-ppm-oxygen Ta powder. Since 2016, 27 clinical applications have been achieved in China using the custom-designed and SEBM-printed Ta implants by the authors of this study. All these Ta implants (mostly Ta lattice structures) have performed satisfactorily in patients’ bodies so far. Three selected clinical applications, Ta lattice hip, fibula and femur implants, are briefly discussed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V. Livescu, C.M. Knapp, G.T. Gray, R.M. Martinez, B.M. Morrow, and B.G. Ndefru, Materialia 1, 15 (2018).

    Article  Google Scholar 

  2. V.K. Balla, S. Bodhak, S. Bose, and A. Bandyopadhyay, Acta Biomater. 6, 3349 (2010).

    Article  Google Scholar 

  3. L. Thijs, M.L. Montero Sistiaga, R. Wauthle, Q. Xie, J.-P. Kruth, and J. Van Humbeeck, Acta Mater. 61, 4657 (2013).

    Article  Google Scholar 

  4. T. Kokubo, H.-M. Kim, and M. Kawashita, Biomaterials 24, 2161 (2003).

    Article  Google Scholar 

  5. S.A. Hacking, J.D. Bobyn, K. Toh, M. Tanzer, and J.J. Krygier, J. Biomed. Mater. Res. 52, 631 (2000).

    Article  Google Scholar 

  6. J.D. Bobyn, G.J. Stackpool, S.A. Hacking, M. Tanzer, and J.J. Krygier, J. Bone Jt. Surg. (Br) 81B, 907 (1999).

    Article  Google Scholar 

  7. H. Matsuno, A. Yokoyama, F. Watari, U. Motohiro, and T. Kawasaki, Biomaterials 22, 1253 (2001).

    Article  Google Scholar 

  8. L. Zhou, T. Yuan, R. Li, J. Tang, G. Wang, and K. Guo, Mater. Sci. Eng. A 707, 443 (2017).

    Article  Google Scholar 

  9. H.R. Ogden, A.G. Imgram, and E.S. Bartlett, Can. Metall. Q. 1, 13 (1962).

    Article  Google Scholar 

  10. B.R. Levine, S. Sporer, R.A. Poggie, C.J. Della Valle, and J.J. Jacobs, Biomaterials 27, 4671 (2006).

    Article  Google Scholar 

  11. X.Z. Zhang, M. Leary, H.P. Tang, T. Song, and M. Qian, Curr. Opin. Solid State Mater. Sci. 22, 75 (2018).

    Article  Google Scholar 

  12. H.P. Tang, M. Qian, N. Liu, X.Z. Zhang, G.Y. Yang, and J. Wang, JOM 67, 555 (2015).

    Article  Google Scholar 

  13. ISO 13782, Implants for Surgery—Metallic Materials—Unalloyed Tantalum for Surgical Implant Applications, (International Organization for Standardization, Geneva, Switzerland, 1996).

  14. J. Black, Clin. Mater. 16, 167 (1994).

    Article  Google Scholar 

  15. L.E. Murr, S.M. Gaytan, F. Medina, H. Lopez, E. Martinez, B.I. Machado, D.H. Hernandez, L. Martinez, M.I. Lopez, R.B. Wicker, and J. Bracke, Philos. Trans. R. Soc. A 368, 1999 (2010).

    Article  Google Scholar 

  16. ASTM E8/E8M-16a, Standard Test Methods for Tension Testing of Metallic Materials, (ASTM, West Conshohocken, PA, 2016).

  17. ISO 13314, Mechanical Testing of MetalsDuctility TestingCompression Test for Porous and Cellular Metals (International Organization for Standardization, Geneva, Switzerland, 2011(E)).

  18. YB/T 5349, Metallic MaterialsDetermination of Bending Mechanical Properties (Standard of China Ferrous Metallurgy, Beijing, China, 2014).

  19. M. Ding, M. Dalstra, and C.C. Danielsen, J. Bone Jt. Surg. (Br) 79B, 995 (1997).

    Article  Google Scholar 

  20. L. Frank, I. Hvid, and B. Pongsoipetch, J. Orthop. Res. 7, 432 (1989).

    Article  Google Scholar 

  21. R. Antonius, H. Zilch, G. Bergmann, and R. Kolbel, Arch. Orthop. Unfall-Chir. 97, 95 (1980).

    Google Scholar 

  22. O. Lindahl, Acta Orthop. Scand. 47, 11 (1976).

    Article  Google Scholar 

  23. T.J. Horn, O.L.A. Harrysson, D.J. Marcellin-Little, H.A. West, B.D.X. Lascelles, and R. Aman, Addit. Manuf. 1–4, 2 (2014).

    Article  Google Scholar 

  24. R. Wauthle, J. van der Stok, S. Amin Yavari, J. Van Humbeeck, J.P. Kruth, A.A. Zadpoor, H. Weinans, M. Mulier, and J. Schrooten, Acta Biomater. 14, 217 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Key R&D Program of China through No. 2016 YFB 1101403, Key R&D Program of Guangdong Province, China (Grant No. 2018B090906003) and Key R&D Program of Shaanxi Province, China (Grant No. 2017ZDXM-GY-057). The authors thank Prof. Ma Qian of RMIT University for many insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. P. Tang or L. Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H.P., Yang, K., Jia, L. et al. Tantalum Bone Implants Printed by Selective Electron Beam Manufacturing (SEBM) and Their Clinical Applications. JOM 72, 1016–1021 (2020). https://doi.org/10.1007/s11837-020-04016-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04016-8

Navigation