Skip to main content
Log in

A 3D Finite Difference Thermal Model Tailored for Additive Manufacturing

  • Additive Manufacturing: Validation and Control
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Physics-based modeling of metal additive manufacturing (AM) processes is computationally challenging due to the very fine meshing required in both time and space. State-of-the-art numerical models that offer great insight into the process have been developed, but they require powerful computational resources and weeks of processing time. Thus, it is often more time-effective to fabricate multiple builds within the time it takes to complete one simulation prediction, further reinforcing the current trial-and-error approach to optimizing the build parameters. This study presents a simplified approach to the transient thermal modeling of the AM process. The numerical model is designed to run on a moderate laptop or desktop computer, without use of parallel processing. The method described in this study uses a unique approach to node creation which leverages the simplicity of the finite difference method to provide predictions in less time than it takes to build the part. Coarse meshing in both time and space along with simplifying assumptions about the solidification process are used in this numerical approach. Model predictions track well with experimental measurements. This approach is being developed for use in an industrial setting to inform deposition parameters based on a desired thermal profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Krueger, Engineering 3, 585 (2017).

    Article  Google Scholar 

  2. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang, Prog. Mater Sci. 92, 112 (2018).

    Article  Google Scholar 

  3. S.A.M. Tofail, E.P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O’Donoghue, and C. Charitidis, Mater. Today 21, 22 (2017).

    Article  Google Scholar 

  4. W.E. Frazier, J. Mater. Eng. Perform. 23, 1979 (2014).

    Article  Google Scholar 

  5. T. Stockman, C. Knapp, K. Henderson, J.S. Carpenter, and J. Schneider, JOM 70, 1835 (2018).

    Article  Google Scholar 

  6. L. Wang, S. Felicelli, Y. Gooroochurn, P. Wang, and M. Horstemeyer, Mater. Sci. Eng. A 474, 148 (2008).

    Article  Google Scholar 

  7. T. Craeghs, F. Bechmann, S. Berumen, and J.P. Kruth, Phys. Procedia 5, 505 (2010).

    Article  Google Scholar 

  8. J.E. Craig, T. Wakeman, R. Grylls, and J. Bullen, Sensors, Sampling, and Simulation for Process Control (Hoboken: Wiley, 2011), p. 103.

    Book  Google Scholar 

  9. M. Khanzadeh, S. Chowdhury, M. Marufuzzaman, M.A. Tschopp, and L. Bian, Sens. Sampl. Simul. Process Control 47, 69 (2018).

    Google Scholar 

  10. A. Bandyopadhyay and K.D. Traxel, Addit. Manuf. 22, 758 (2018).

    Article  Google Scholar 

  11. A. Peralta, M.P. Enright, M. Megahed, J. Gong, M. Roybal, and J. Craig, Integr. Mater. Manuf. Innov. 5, 8 (2016).

    Article  Google Scholar 

  12. S.K. Everton, M. Hirsch, P. Stravroulakis, R.K. Leach, and A.T. Clare, Mater. Des. 95, 431 (2016).

    Article  Google Scholar 

  13. D. Rosenthal, Trans. ASME 68, 849 (1946).

    Google Scholar 

  14. T.W. Eager and N.S. Tsai, Weld. J. 62, 346 (1983).

    Google Scholar 

  15. J. Ding, P. Colegrove, J. Mehnen, S. Williams, F. Wang, and P.S. Almeida, Int. J. Adv. Manuf. Technol. 70, 227 (2014).

    Article  Google Scholar 

  16. J. Irwin and P. Michaleris, J. Manuf. Sci. Eng. 138, 111004 (2016).

    Article  Google Scholar 

  17. P. Foteinopoulos, A. Papacharalampopoulos, and P. Stravropoulos, J. Manuf. Sci. Technol. 20, 66 (2018).

    Article  Google Scholar 

  18. S. Tadano, T. Hino, and Y. Nakastani, J. Mater. Process. Technol. 257, 163 (2018).

    Article  Google Scholar 

  19. H. Zhao, G. Zhang, Z. Yin, and L. Wu, J. Mater. Process. Technol. 212, 276 (2012).

    Article  Google Scholar 

  20. M. Chiumenti, M. Cervera, A. Salmi, C. Agelet de Saracibar, N. Dialami, and K. Matsui, Comput. Methods Appl. Mech. Eng. 199, 2343 (2010).

    Article  Google Scholar 

  21. P. Prabhakar, W.J. Sames, R. Dehoff, and S.S. Babu, Addit. Manuf. 7, 83 (2015).

    Article  Google Scholar 

  22. J. Wu, L. Wang, and X. An, Optik 137, 65 (2017).

    Article  Google Scholar 

  23. P. Machaleris, Finite Elem. Anal. Des. 86, 51 (2014).

    Article  Google Scholar 

  24. J. Ding, P. Colegrove, J. Mehnen, S. Ganguly, P.M.S. Almeida, F. Wang, and S. Williams, Comput. Mater. Sci. 50, 3315 (2011).

    Article  Google Scholar 

  25. J. Crank and P. Nicolson, Proc. Camb. Phil. Soc. 43, 50 (1947).

    Article  Google Scholar 

  26. “Carpenter Invar 36® Alloy, Cold Drawn Bars” Matweb, http://www.matweb.com/search/datasheet.aspx?matguid=b6fb00b235f0442da4d31a0cd04671c9&ckck=1. Accessed January 2018.

  27. Y. Jaluria, Computational Heat Transfer, 2nd ed. (New York: Taylor & Francis, 2003), pp. 37–82.

    Google Scholar 

  28. T. Bergman, F. Incropera, D. DeWitt, and A. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed. (Hoboken: Wiley, 2007), pp. 8–9.

    Google Scholar 

  29. T. Stockman, Los Alamos National Laboratory, Los Alamos, NM, unpublished research (2018).

  30. R. Kozakov, H. Schöpp, H. Gött, A. Sperl, G. Wilhelm, and D. Uhrlandt, J. Phys. D Appl. Phys. 46, 475501 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

T.S., B.W., and J.A.S. acknowledge funding provided in part by a Navy STTR Phase II with Oregon Institute of Technology/Keystone Synergistic Enterprises, Inc., Contract #KSE17035-OIT and a NASA STTR Phase II with Keystone Synergistic Enterprises, Inc., Grant NNX15CM68P. Additional funding is provided (J.S.C., T.S.) by the Los Alamos National Laboratory, an affirmative action equal opportunity employer, operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under Contract DE-AC5206NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Stockman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stockman, T., Schneider, J.A., Walker, B. et al. A 3D Finite Difference Thermal Model Tailored for Additive Manufacturing. JOM 71, 1117–1126 (2019). https://doi.org/10.1007/s11837-019-03338-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03338-6

Navigation