Skip to main content
Log in

Probing the Effect of Hydrogen on Elastic Properties and Plastic Deformation in Nickel Using Nanoindentation and Ultrasonic Methods

  • Mechanical Behavior at the Nanoscale
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases ~ 22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c44 decreases ~ 20% after hydrogen exposure. Furthermore, clear hydrogen–deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yielding in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal a direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S.P. Lynch, Corros. Sci. 22, 925 (1982).

    Article  Google Scholar 

  2. W. Gerberich, Gaseous Hydrogen Embrittlement of Materials in Energy Technologies. Mechanical Modelling and Future Developments, Vol. 2, ed. R.P. Gangloff and B.P. Somerday (Philadelphia: Woodhead, 2012), pp. 209–246.

    Chapter  Google Scholar 

  3. H.K. Birnbaum and P. Sofronis, Mater. Sci. Eng. A 176, 191 (1994).

    Article  Google Scholar 

  4. R. Oriani and P. Joshephic, Acta Metall. 22, 1065 (1974).

    Article  Google Scholar 

  5. M. Nagumo, Mater. Sci. Technol. 20, 940 (2004).

    Article  Google Scholar 

  6. Y. Jagodzinski, H. Hanninen, O. Tarasenko, and S. Smuk, Scr. Mater. 43, 245 (2000).

    Article  Google Scholar 

  7. J. Kameda and C. McMahon, Metall. Mater. Trans. A 11, 91 (1980).

    Article  Google Scholar 

  8. W.W. Gerberich and Y.T. Chen, Metall. Trans. A 6, 271 (1975).

    Article  Google Scholar 

  9. R.H. Jones, S.M. Bruemmer, M.T. Thomas, and D.R. Baer, Metall. Mater. Trans. A 14, 1729 (1983).

    Article  Google Scholar 

  10. S.M. Bruemmer, R.H. Jones, M.T. Thomas, and D.R. Baer, Metall. Mater. Trans. A 14, 223 (1983).

    Article  Google Scholar 

  11. S.K. Lawrence, B.P. Somerday, N.R. Moody, and D.F. Bahr, JOM J. Miner. Met. Mater. Soc. 66, 1383 (2014).

    Article  Google Scholar 

  12. S.K. Lawrence, B.P. Somerday, and R.A. Karnesky, JOM J. Miner. Met. Mater. Soc. 69, 45 (2017).

    Article  Google Scholar 

  13. D. Sieborger, H. Knake, and U. Glatzel, Mater. Sci. Eng. A 298, 26 (2001).

    Article  Google Scholar 

  14. M. Wen, A. Barnoush, and K. Yokogawa, Comput. Phys. Commun. 182, 1621 (2011).

    Article  Google Scholar 

  15. A. Barnoush and H. Vehoff, Scr. Mater. 55, 195 (2006).

    Article  Google Scholar 

  16. R.E. Green, Treatise on Materials Science: Ultrasonic Investigation of Mechanical Properties (New York: Academic Press, 1973).

    Google Scholar 

  17. J. De Klerk, Proc. Phys. Soc. 73, 337 (1959).

    Article  Google Scholar 

  18. J.R. Neighbours, F.W. Bratten, and C.S. Smith, J. Appl. Phys. 23, 389 (1952).

    Article  Google Scholar 

  19. A. Zielnski, Acta. Met. Mater. 38, 2573 (1990).

    Article  Google Scholar 

  20. S.K. Lawrence, Y. Yagodzinskyy, H. Hänninen, F. Tuomisto, E. Korhonen, Z.D. Harris, and B.P. Somerday, Acta Mater. 128, 218 (2017).

    Article  Google Scholar 

  21. H.M. Ledbetter and R.P. Reed, J. Phys. Chem. Ref. Data 2, 531 (1973).

    Article  Google Scholar 

  22. J. Melngailis, Phys. Status Solidi 16, 247 (1966).

    Article  Google Scholar 

  23. P.J. Ferreira, I.M. Robertson, and H.K. Birnbaum, Acta Mater. 47, 2991 (1999).

    Article  Google Scholar 

  24. P.J. Ferreira, I.M. Robertson, and H.K. Birnbaum, Acta Mater. 46, 1749 (1998).

    Article  Google Scholar 

  25. D. Lorenz, A. Zeckzer, U. Hilpert, P. Grau, H. Johansen, and H. Leipner, Phys. Rev. B 67, 1 (2003).

    Article  Google Scholar 

  26. T.A. Michalske and J.E. Houston, Acta Mater. 46, 391 (1998).

    Article  Google Scholar 

  27. A.A. Zbib and D.F. Bahr, Metall. Mater. Trans. A 38, 2249 (2007).

    Article  Google Scholar 

  28. D.F. Bahr and G. Vasquez, J. Mater. Res. 20, 1947 (2005).

    Article  Google Scholar 

  29. M. Wen, L. Zhang, B. An, S. Fukuyama, and K. Yokogawa, Phys. Rev. B Condens. Matter Mater. Phys. 80, 1 (2009).

    Google Scholar 

  30. A. Barnoush, M. Asgari, and R. Johnsen, Scr. Mater. 66, 414 (2012).

    Article  Google Scholar 

  31. A. Barnoush, N. Kheradmand, and T. Hajilou, Scr. Mater. 108, 76 (2015).

    Article  Google Scholar 

  32. H. Osono, T. Kino, Y. Kurokawa, and Y. Fukai, J. Alloys Compd. 231, 41 (1995).

    Article  Google Scholar 

  33. K. Takai, H. Shoda, H. Suzuki, and M. Nagumo, Acta Mater. 56, 5158 (2008).

    Article  Google Scholar 

  34. I. Salehinia and S.N. Medyanik, Metall. Mater. Trans. A 42A, 3868 (2011).

    Article  Google Scholar 

  35. K. Nibur, D. Bahr, and B. Somerday, Acta Mater. 54, 2677 (2006).

    Article  Google Scholar 

  36. R. Kirchheim, Scr. Mater. 62, 67 (2010).

    Article  Google Scholar 

  37. R.H.W. Honeycombe, Plastic Deformation of Metals, 2nd ed. (London: Edward Arnold, 1984).

    Google Scholar 

Download references

Acknowledgements

This work was performed while SKL was affiliated with Sandia National Laboratories and was supported by the DOE NNSA Stewardship Science Graduate Fellowship [Grant DE-NA0002135] and the Laboratory Directed Research and Development program at Sandia National Laboratories [Grant SNL-LDRD-173116], a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under Contract DE-NA-0003525. SAND2018-2771J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Lawrence.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawrence, S.K., Somerday, B.P., Ingraham, M.D. et al. Probing the Effect of Hydrogen on Elastic Properties and Plastic Deformation in Nickel Using Nanoindentation and Ultrasonic Methods. JOM 70, 1068–1073 (2018). https://doi.org/10.1007/s11837-018-2850-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2850-z

Navigation