Skip to main content

Advertisement

Log in

High-Speed Additive Manufacturing Through High-Aspect-Ratio Nozzles

  • Additive Manufacturing of Composites and Complex Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The feasibility of layer-by-layer manufacturing through high-aspect-ratio (HAR) nozzles for microextrusion of paste to deposit planes has been investigated. Various conditions for paste extrusion, including nozzle moving speed, piston speed, extrusion rate, and distance between the nozzle tip and substrate, have been evaluated. By linking various microextrusion parameters together with the aid of a critical distance concept derived from microextrusion using circular nozzles and addressing the extrusion delay in response to the change of the piston speed and air pocket problems properly, we successfully microextruded single planes, multilayer objects, and larger planes made of multiple smaller planes side by side through HAR nozzles. It is further demonstrated that the XY dimensions of an extruded plane in the steady-state extrusion stage are determined by the nozzle travel distance and the length of the HAR nozzle opening if microextrusion is conducted with proper conditions. However, the height of the extruded plane is not only determined by the microextrusion conditions, but also affected by the drying shrinkage of the paste after microextrusion. This demonstration of the feasibility of using a HAR nozzle machine opens the door to manufacture of multimaterial, multilayer devices with high productivity in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.J. Beaman, J.W. Barlow, D.L. Bourell, R.H. Crawford, H.L. Marcus, and K.P. McAlea, Solid Freeform Fabrication: A New Direction in Manufacturing (Norwell: Kluwer Academic, 1997).

    Book  Google Scholar 

  2. L. Jepson, J.J. Beaman, D.L. Bourell, and K.L. Wood, in Proceedings of the 8th Annual SFF Symposium, eds. by D.L. Bourell, et al. (The University of Texas, Austin, 1997), pp. 67–79.

  3. J. Mazumder, J. Choi, K. Nagarathnam, J. Koch, and D. Hetzner, JOM 49, 55 (1997).

    Article  Google Scholar 

  4. J. Wang and L. Shaw, J. Am. Ceram. Soc. 89, 3285 (2006).

    Article  Google Scholar 

  5. T.R. Jackson, H. Liu, N.M. Patrikalakis, E.M. Sachs, and M.J. Cima, Mater. Des. 20, 63 (1999).

    Article  Google Scholar 

  6. J. Wang, L. Shaw, and T. Cameron, J. Am. Ceram. Soc. 89, 346 (2006).

    Article  Google Scholar 

  7. S. Das, M. Wolhlert, J.J. Beaman, and D.L. Bourell, JOM 50, 17 (1998).

    Article  Google Scholar 

  8. J.E. Crocker, S. Harrison, L.C. Sun, L. Shaw, and H. Marcus, JOM 50, 21 (1998).

    Article  Google Scholar 

  9. M. Mott and J.R.G. Evans, Mater. Sci. Eng. 271, 344 (1999).

    Article  Google Scholar 

  10. R. Chartoff, B. McMorrow, and P. Lucas, in Proceedings of the 14th Annual SFF Symposium, eds. by D.L. Bourell, et al. (The University of Texas, Austin, 2003), pp. 385–391.

  11. L.C. Sun and L. Shaw, Metall. Mater. Trans. 30, 2549 (1999).

    Article  Google Scholar 

  12. L.C. Sun, K.J. Jakubenas, J.E. Crocker, S. Harrison, L. Shaw, and H. Marcus, Mater. Manuf. Process. 13, 909 (1998).

    Article  Google Scholar 

  13. D.M. Keicher and J.E. Smugeresky, JOM 49, 51 (1997).

    Article  Google Scholar 

  14. B.Y. Ahn, E.B. Duoss, M.J. Motala, X. Guo, S. Park, Y. Xiong, R.G. Nuzzo, J.A. Rogers, and J.A. Lewis, Science 323, 1590 (2009).

    Article  Google Scholar 

  15. R.A. Barry III, R.F. Shepherd, J.N. Hanson, R.G. Nuzzo, P. Wiltzius, and J.A. Lewis, Adv. Mater. 21, 2407 (2009).

    Article  Google Scholar 

  16. X. Li, J. Wang, L. Shaw, and T. Cameron, Rapid Prototyp. J. 11, 52 (2005).

    Article  Google Scholar 

  17. X. Li, J. Wang, and L. Shaw, Rapid Prototyp. J. 11, 140 (2005).

    Article  Google Scholar 

  18. J.A. Lewis, J.E. Smay, J. Stuecker, and J. Cesarano III, J. Am. Ceram. Soc. 89, 3599 (2006).

    Article  Google Scholar 

  19. J. Moon, J.E. Grau, V. Knezevic, M.J. Cima, and E.M. Sachs, J. Am. Ceram. Soc. 85, 755 (2002).

    Article  Google Scholar 

  20. X. Zhao, J.R.G. Evans, and M.J. Edirisinghe, J. Am. Ceram. Soc. 85, 2113 (2002).

    Article  Google Scholar 

  21. N. Reis, C. Ainsley, and B. Derby, J. Am. Ceram. Soc. 88, 802 (2005).

    Article  Google Scholar 

  22. K.A.M. Seerden, N. Reis, J.R.G. Evans, P.S. Grant, J.W. Halloran, and B. Derby, J. Am. Ceram. Soc. 84, 2514 (2001).

    Article  Google Scholar 

  23. J. Cesarano III, R. Segalman, and P. Calvert, Ceram. Ind. 148, 94 (1998).

    Google Scholar 

  24. B.A. Tuttle, J.E. Smay, J. Cesarano III, J.A. Voigt, T.W. Scofield, W.R. Olson, and J.A. Lewis, J. Am. Ceram. Soc. 84, 872 (2001).

    Article  Google Scholar 

  25. M. Allahverdi, S.C. Danforth, M. Jafari, and A. Safari, J. Eur. Ceram. Soc. 21, 1485 (2001).

    Article  Google Scholar 

  26. S. Rangarajan, G. Qi, N. Venkataraman, A. Safari, and S.C. Danforth, J. Am. Ceram. Soc. 83, 1663 (2000).

    Article  Google Scholar 

  27. S.L. Morissette, J.A. Lewis, P.G. Clem, J. Cesarano III, and D.B. Dimos, J. Am. Ceram. Soc. 84, 2462 (2001).

    Article  Google Scholar 

  28. R. Chang, J. Nam, and W. Sun, Tissue Eng. Part A 14, 41 (2008).

    Article  Google Scholar 

  29. R. Landers and R. Mülhaupt, Macromol. Mater. Eng. 282, 17 (2000).

    Article  Google Scholar 

  30. S.C. Singhal, Solid State Ionics 152–153, 405 (2002).

    Article  Google Scholar 

  31. N.Q. Minh, Solid State Ionics 174, 271 (2004).

    Article  Google Scholar 

  32. T. Tsai, E. Perry, and S. Barnett, J. Electrochem. Soc. 144, L130 (1997).

    Article  Google Scholar 

  33. A.W. Tavernor, S.H.P. Li, A.J. Bell, and R. Stevens, J. Eur. Ceram. Soc. 19, 1691 (1999).

    Article  Google Scholar 

  34. B.Y. Yu and W.C.J. Wei, J. Am. Ceram. Soc. 88, 2328 (2005).

    Article  Google Scholar 

  35. F.J. Toal, J.P. Dougherty, and C.A. Randall, J. Am. Ceram. Soc. 81, 2371 (1998).

    Article  Google Scholar 

  36. J. Wang and L. Shaw, Mater. Sci. Eng. 397, 314 (2005).

    Article  Google Scholar 

  37. Q. Li and J.A. Lewis, Adv. Mater. 15, 1639 (2003).

    Article  Google Scholar 

  38. E. Özkol, J. Ebert, K. Uibel, A.M. Wätjen, and R. Telle, J. Eur. Ceram. Soc. 29, 403 (2009).

    Article  Google Scholar 

  39. R. Noguera, M. Lejeune, and T. Chartier, J. Eur. Ceram. Soc. 25, 2055 (2005).

    Article  Google Scholar 

  40. J.H. Song, M.J. Edirisinghe, and J.R.G. Evans, J. Am. Ceram. Soc. 82, 3374 (1999).

    Article  Google Scholar 

  41. B. Cappi, E. Özkol, J. Ebert, and R. Telle, J. Eur. Ceram. Soc. 28, 2625 (2008).

    Article  Google Scholar 

  42. H. Wagata, T. Taniguchi, R. Gallage, A.K. Subramani, N. Sakamoto, T. Watanabe, M. Yoshimura, and N. Matsushita, J. Am. Ceram. Soc. 93, 381 (2010).

    Article  Google Scholar 

  43. L. Li, S.M.I. Ayub, and L. Shaw, Ceram. Int. 42, 9086 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the US National Science Foundation through Grant No. CMMI-1331735 is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon Shaw.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 586 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaw, L., Islam, M., Li, J. et al. High-Speed Additive Manufacturing Through High-Aspect-Ratio Nozzles. JOM 70, 284–291 (2018). https://doi.org/10.1007/s11837-017-2729-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2729-4

Navigation