Skip to main content
Log in

Elastic Property Dependence on Mobile and Trapped Hydrogen in Ni-201

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Enhanced dislocation processes can accompany decohesion mechanisms during hydrogen degradation of ductile structural metals. However, hydrogen–deformation interactions and the role of defects in degradation processes remain poorly understood. In the current study, nanoindentation within specifically oriented grains in as-received, hydrogen-charged, aged, and hydrogen re-charged conditions revealed a “hysteresis” of indentation modulus, while the indentation hardness varied minimally. Thermal pre-charging with approximately 2000 appm hydrogen decreases the indentation modulus by ~20%, aging leads to a slight recovery, but re-charging drives the modulus back down to values similar to those measured in the hydrogen-charged condition. This “hysteresis” indicates that dissolved interstitial hydrogen is not solely responsible for mechanical property alterations; hydrogen trapped at defects also contributes to elastic property variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S.P. Lynch, Corros. Sci. 22, 925 (1982).

    Article  Google Scholar 

  2. W. Gerberich, Gaseous Hydrogen Embrittlement of Materials in Energy Technologies Volume 2: Mechanisms, modeling and future developments, ed. R.P. Gangloff and B.P. Somerday (Philadelphia: Woodhead, 2012), pp. 209–246.

    Chapter  Google Scholar 

  3. H.K. Birnbaum and P. Sofronis, Mater. Sci. Eng. A 176, 191 (1994).

    Article  Google Scholar 

  4. R. Oriani and P. Joshephic, Acta Metall. 22, 1065 (1974).

    Article  Google Scholar 

  5. Y. Jagodzinski, H. Hanninen, O. Tarasenko, and S. Smuk, Scr. Mater. 43, 245 (2000).

    Article  Google Scholar 

  6. J. Kameda and C. McMahon, Metall. Mater. Trans. A 11, 91 (1980).

    Article  Google Scholar 

  7. W.W. Gerberich and Y.T. Chen, Metall. Trans. A 6, 271 (1975).

    Article  Google Scholar 

  8. R.H. Jones, S.M. Bruemmer, M.T. Thomas, and D.R. Baer, Metall. Mater. Trans. A 14, 1729 (1983).

    Article  Google Scholar 

  9. S.M. Bruemmer, R.H. Jones, M.T. Thomas, and D.R. Baer, Metall. Mater. Trans. A 14, 223 (1983).

    Article  Google Scholar 

  10. M. Nagumo, Mater. Sci. Technol. 20, 940 (2004).

    Article  Google Scholar 

  11. D. Delafosse, Gaseous Hydrogen Embrittlement of Materials in Energy Technologies Volume 2: Mechanisms, modeling and future developments, ed. R.P. Gangloff and B.P. Somerday (Philadelphia: Woodhead, 2012), pp. 247–285.

    Chapter  Google Scholar 

  12. S.K. Lawrence, B.P. Somerday, N.R. Moody, and D.F. Bahr, JOM J. Miner. Met. Mater. Soc. 66, 1383 (2014).

    Article  Google Scholar 

  13. A. Barnoush and H. Vehoff, Scr. Mater. 55, 195 (2006).

    Article  Google Scholar 

  14. A. Barnoush and H. Vehoff, Acta Mater. 58, 5274 (2010).

    Article  Google Scholar 

  15. N. Kheradmand, J. Dake, and A. Barnoush, Philos. Mag. 92, 3216 (2012).

    Article  Google Scholar 

  16. S. Bechtle, M. Kumar, B.P. Somerday, M.E. Launey, and R.O. Ritchie, Acta Mater. 57, 4148 (2009).

    Article  Google Scholar 

  17. M.R. Louthan Jr., J.A. Donovan, and G.R. Caskey Jr., Acta Metall. 23, 745 (1975).

    Article  Google Scholar 

  18. A. Metsue, A. Oudriss, and X. Feaugas, J. Alloys Compd. 656, 555 (2016).

    Article  Google Scholar 

  19. Y. Wang, D. Connétable, and D. Tanguy, Phys. Rev. B 91, 1 (2015).

    Google Scholar 

  20. O. Todoshchenko, Y. Yagodzinskyy, and H. Hänninen, Defect Diffus Forum 344, 71 (2013).

    Article  Google Scholar 

  21. W. Betteridge, Nickel and Its Alloys (West Sussex: Ellis Horwood Ltd, 1984).

    Google Scholar 

  22. J.J. Vlassak and W.D. Nix, J. Mech. Phys. Solids 42, 1223 (1994).

    Article  Google Scholar 

  23. Y. Fukai and N. Okuma, Phys. Rev. Lett. 73, 1640 (1994).

    Article  Google Scholar 

  24. H. Osono, T. Kino, Y. Kurokawa, and Y. Fukai, J. Alloys Compd. 231, 41 (1995).

    Article  Google Scholar 

  25. K. Takai, H. Shoda, H. Suzuki, and M. Nagumo, Acta Mater. 56, 5158 (2008).

    Article  Google Scholar 

  26. M. Hatano, M. Fujinami, K. Arai, H. Fujii, and M. Nagumo, Acta Mater. 67, 342 (2014).

    Article  Google Scholar 

  27. N. Carr and R. Mclellan, J. Phys. Chem. Solids 67, 1797 (2006).

    Article  Google Scholar 

  28. D. Tanguy, Y. Wang, and D. Connétable, Acta Mater. 78, 135 (2014).

    Article  Google Scholar 

  29. K. Nibur, D. Bahr, and B. Somerday, Acta Mater. 54, 2677 (2006).

    Article  Google Scholar 

  30. F.M. Mazzolai and H.K. Birnbaum, J. Phys. F Met. Phys. 15, 525 (1985).

    Article  Google Scholar 

  31. E. Lunarska, A. Zielnski, and M. Smialowski, Acta Metall. 25, 305 (1977).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the DOE NNSA Stewardship Science Graduate Fellowship [Grant DE-NA0002135] (SKL) and the Laboratory Directed Research and Development program at Sandia National Laboratories [Grant SNL-LDRD-173116], a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Lawrence.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 296 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawrence, S.K., Somerday, B.P. & Karnesky, R.A. Elastic Property Dependence on Mobile and Trapped Hydrogen in Ni-201. JOM 69, 45–50 (2017). https://doi.org/10.1007/s11837-016-2157-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2157-x

Keywords

Navigation