Skip to main content
Log in

SnO2-Reduced Graphene Oxide Nanocomposites via Microwave Route as Anode for Sodium-Ion Battery

  • Published:
JOM Aims and scope Submit manuscript

Abstract

SnO2-reduced graphene oxide (SnO2-rGO) nanocomposites are successfully synthesized via a rapid microwave-assisted method (within 150 s). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations show the ultrafine SnO2 nanoparticles (~3 nm) are uniformly anchored onto the rGO. The typical SnO2-rGO exhibits a high initial reversible capacity of 260 mAh g−1 at 50 mA g−1, which is higher than that (45 mAh g−1) of the bare SnO2 electrode. The SnO2-rGO electrode also shows high cycling stability (79.6% capacity retention after 100 cycles) and rate capability (150 mAh g−1 at 500 mA g−1). The improved electrochemical performance of the SnO2-rGO is ascribed to extremely tiny SnO2 nanoparticles well distributed on the surface of the rGO and the conductive frameworks provided by rGO, so as to alleviate the aggregation of SnO2 and buffer the volumetric change during charging and discharging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Kim, K.H. Ha, S.M. Oh, and K.T. Lee, Chem. Eur. J. 20, 11980 (2014).

    Article  Google Scholar 

  2. A. Manthiram, A.V. Murugan, A. Sarkar, and T. Muraliganth, Energy Environ. Sci. 1, 621 (2008).

    Article  Google Scholar 

  3. G.-N. Zhu, Y.-G. Wang, and Y.-Y. Xia, Energy Environ. Sci. 5, 6652 (2012).

    Article  Google Scholar 

  4. M.D. Slater, D. Kim, E. Lee, and C.S. Johnson, Adv. Funct. Mater. 23, 947 (2013).

    Article  Google Scholar 

  5. H. Pan, Y.-S. Hu, and L. Chen, Energy Environ. Sci. 6, 2338 (2013).

    Article  Google Scholar 

  6. Y.-X. Wang, Y.-G. Lim, M.-S. Park, S. Chou, J.H. Kim, H. Liu, S.-X. Dou, and Y.-J. Kim, J. Mater. Chem. A 2, 529 (2014).

    Article  Google Scholar 

  7. Y. Xu, Y. Zhu, Y. Liu, and C. Wang, Adv. Energy Mater. 3, 128 (2013).

    Article  Google Scholar 

  8. A. Darwiche, C. Marino, M.T. Sougrati, B. Fraisse, L. Stievano, and L. Monconduit, J. Am. Chem. Soc. 134, 20805 (2012).

    Article  Google Scholar 

  9. H. Bian, J. Zhang, M.-F. Yuen, W. Kang, Y. Zhan, Y. Denis, Z. Xu, and Y.Y. Li, J. Power Sources 307, 634 (2016).

    Article  Google Scholar 

  10. J. Qian, X. Wu, Y. Cao, X. Ai, and H. Yang, Angew. Chem. 125, 4731 (2013).

    Article  Google Scholar 

  11. Q. Sun, Q.-Q. Ren, H. Li, and Z.-W. Fu, Electrochem. Commun. 13, 1462 (2011).

    Article  Google Scholar 

  12. L.-Y. Qi, Y.-W. Zhang, Z. Zuo, Y. Xin, C. Yang, B. Wu, X. Zhang, and H. Zhou, J. Mater. Chem. A. (2016). doi:10.1039/C6TA01836J.

    Google Scholar 

  13. Y. Wang, D. Su, C. Wang, and G. Wang, Electrochem. Commun. 29, 8 (2013).

    Article  Google Scholar 

  14. D. Su, H.-J. Ahn, and G. Wang, Chem. Commun. 49, 3131 (2013).

    Article  Google Scholar 

  15. H. Liu, J. Huang, X. Li, J. Liu, Y. Zhang, and K. Du, Appl. Surf. Sci. 258, 4917 (2012).

    Article  Google Scholar 

  16. R.S. Kalubarme, J.-Y. Lee, and C.-J. Park, ACS Appl. Mater. Interfaces 7, 17226 (2015).

    Article  Google Scholar 

  17. M. Gu, A. Kushima, Y. Shao, J.-G. Zhang, J. Liu, N.D. Browning, J. Li, and C. Wang, Nano Lett. 13, 5203 (2013).

    Article  Google Scholar 

  18. X. Zhao, Z. Zhang, F. Yang, Y. Fu, Y. Lai, and J. Li, RSC Adv. 5, 31465 (2015).

    Article  Google Scholar 

  19. Y. Cheng, J. Huang, J. Li, Z. Xu, L. Cao, H. Ouyang, J. Yan, and H. Qi, J. Alloys Compd. 658, 234 (2016).

    Article  Google Scholar 

  20. Y. Zhang, J. Xie, S. Zhang, P. Zhu, G. Cao, and X. Zhao, Electrochim. Acta 151, 8 (2015).

    Article  Google Scholar 

  21. C. Zhong, J. Wang, Z. Chen, and H. Liu, J. Phys. Chem. C 115, 25115 (2011).

    Article  Google Scholar 

  22. Z. Tai, X. Yan, and Q. Xue, J. Electrochem. Soc. 159, A1702 (2012).

    Article  Google Scholar 

  23. X. Jiang, X. Zhu, X. Liu, L. Xiao, X. Ai, H. Yang, and Y. Cao, Electrochim. Acta 196, 431 (2016).

    Article  Google Scholar 

  24. Y. Bai, M. Du, J. Chang, J. Sun, and L. Gao, J. Mater. Chem A 2, 3834 (2014).

    Article  Google Scholar 

  25. M. Dirican, Y. Lu, Y. Ge, O. Yildiz, and X. Zhang, ACS Appl. Mater. Interfaces 7, 18387 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We thank financial support by the National Key Basic Research Program of China (No. 2015CB251100) and National Science Foundation of China (Nos. 21373155, 21333007, 21303262), Program for New Century Excellent Talents in University (NCET-12-0419) and Hubei National Funds for Distinguished Young Scholars (2014CFA038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuliang Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H., Jiang, X., Chen, X. et al. SnO2-Reduced Graphene Oxide Nanocomposites via Microwave Route as Anode for Sodium-Ion Battery. JOM 68, 2607–2612 (2016). https://doi.org/10.1007/s11837-016-2061-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2061-4

Keywords

Navigation