Skip to main content

Advertisement

Log in

Mechanical Strength and Surface Roughness of Magnesium-Based Metallic Glasses

  • Published:
JOM Aims and scope Submit manuscript

Abstract

This work evaluated the mechanical strength and surface roughness of MgZn30Ca5 ribbon manufactured via a melt spinning technique for applications in the biomedical field. Annealing was performed at 280°C. The inner side (in contact with the wheel) and the outer side (not in contact with the wheel) of the ribbons were mechanically evaluated using nanoindentation, and its surfaces were analyzed by an optical profilometer. Differential scanning calorimeter (DSC) and X-ray diffraction (XRD) analyses were also performed to identify the structure and devitrification of the magnesium metallic glass (MgMG). The nanohardness and elastic modulus increased after annealing (p < 0.0001). No differences were seen in the strength between the two sides of the ribbons (p > 0.05). Although both sides of the ribbons showed different surface profiles (p < 0.0001), no statistical difference was detected in roughness parameters on either ribbon side before (p = 0.3094) and after (p = 0.8742) annealing. DSC curves showed disturbances in enthalpy attributed to a relaxation in the MgMG structure and free volume annihilation. The DRX diffractogram showed sharp peaks after annealing, with MgZn and Ca2Mg5Zn13 phases being identified. Although the use of MgMG in biomedical applications is promising, the ribbons displayed limited ductility, toughness, and a relevant embrittlement after the annealing procedure. There were significant changes in the surface profile of both sides of the ribbons. Nevertheless, neither annealing nor the ribbon side had influenced surface roughness parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Q.F. Li, H.R. Weng, Z.Y. Suo, Y.L. Ren, X.G. Yuan, and K.Q. Qiu, Mater. Sci. Eng. A 487, 301 (2008).

    Article  Google Scholar 

  2. O. Hakimi and E. Aghion, Adv. Eng. Mater. 16, 364 (2014).

    Article  Google Scholar 

  3. H.J. Yu, J.Q. Wang, X.T. Shi, D.V. Louzguine-Luzgin, H.K. Wu, and J.H. Perepezko, Adv. Funct. Mater. 23, 4793 (2013).

    Google Scholar 

  4. H.B. Yu, X. Shen, Z. Wang, L. Gu, W.H. Wang, and H.Y. Bai, Phys. Rev. Lett. 108, 1 (2012).

    Google Scholar 

  5. J.X. Zhao, R.T. Qu, F.F. Wu, Z.F. Zhang, B.L. Shen, M. Stoica, and J. Eckert, J. App. Phys. 105, 1 (2009).

    Google Scholar 

  6. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty, Acta Mater. 55, 4067 (2007).

    Article  Google Scholar 

  7. C.A. Schuh, A.C. Lund, and T.G. Nieh, Acta Mater. 52, 5879 (2004).

    Article  Google Scholar 

  8. C.A. Angell, K.L. Ngai, G.B. Mckenna, P.F. McMillan, and S.W. Martin, J. Appl. Phys. 88, 3113 (2000).

    Article  Google Scholar 

  9. K.L. Ngai and M. Paluch, J. Chem. Phys. 120, 857 (2004).

    Article  Google Scholar 

  10. F. Spaepen, Scr. Mater. 54, 363 (2006).

    Article  Google Scholar 

  11. F. Spaepen, Acta Metall. 25, 407 (1977).

    Article  Google Scholar 

  12. A.S. Argon, Acta Metall. 27, 47 (1979).

    Article  Google Scholar 

  13. A.S. Argon and L.T. Shi, Acta Metall. 31, 499 (1983).

    Article  Google Scholar 

  14. J.D. Cao, N.T. Kirkland, K.J. Laws, N. Birbilis, and M. Ferry, Acta Biomater. 8, 2375 (2012).

    Article  Google Scholar 

  15. C. Fox, D. Ramsoomair, and C. Carte, South Med. J. 94, 1195 (2001).

    Article  Google Scholar 

  16. M.B. Zemel, Am. J. Clin. Nutr. 79, 9075 (2004).

    Google Scholar 

  17. K.H. Brown, S.E. Wuehler, and J.M. Peerson, Food Nutr. Bull. 22, 113 (2001).

    Article  Google Scholar 

  18. H. Wang and L. Boyapati, Implant Dent. 15, 8 (2006).

    Article  Google Scholar 

  19. W.H. Wang, C. Dong, and C.H. Shek, Mater. Sci. Eng. R 44, 45 (2004).

    Article  Google Scholar 

  20. V.A. Khonik and L.V. Spivak, Acta Mater. 44, 367 (1996).

    Article  Google Scholar 

  21. J.J. Lewandowski, M. Shazly, and S. Nouri, Scr. Mater. 54, 337 (2006).

    Article  Google Scholar 

  22. J.J. Lewandowski, W.H. Wangb, and A.L. Greerc, Philos. Mag. Lett. 85, 77 (2005).

    Article  Google Scholar 

  23. W.L. Johnson and K. Samwer, Phys. Rev. Lett. 95, 195501 (2005).

    Article  Google Scholar 

  24. D. Suh, R.H. Dauskardt, and J. Non-Cryst, Solids. 317, 181 (2003).

    Google Scholar 

  25. P. Murali and U. Ramamurty, Acta Mater. 53, 1467 (2005).

    Article  Google Scholar 

  26. R.D. Conner, W.L. Johnson, N.E. Paton, and W.D. Nix, J. Appl. Phys. 94, 904 (2003).

    Article  Google Scholar 

  27. J.J. Lewandowski and P. Lowhaphandu, Int. Mater. Rev. 43, 145 (1998).

    Article  Google Scholar 

  28. H.A. Bruck, T. Christman, A.J. Rosakis, and W.L. Johnson, Scr. Metall. Mater. 30, 429 (1994).

    Article  Google Scholar 

  29. R. Vaidyanathan, M. Dao, G. Ravichandran, and S. Suresh, Acta Mater. 49, 3781 (2001).

    Article  Google Scholar 

  30. B.B. Medeiros, M.M. Medeiros, J. Fornell, J. Sort, M.D. Baró, and A.M. Jorge Jr, J. Non Cryst. Solids 425, 103 (2015).

    Article  Google Scholar 

  31. F.S. Santos, J. Sort, J. Fornell, M.D. Baró, S. Surinãch, C. Bolfarini, W.J. Botta, and C.S. Kiminami, J. Non Cryst. Solids 356, 2251 (2010).

    Article  Google Scholar 

  32. J. Eckert and A. Slipenyuk, Scr. Mater. 50, 39 (2004).

    Article  Google Scholar 

  33. H.S. Chen, J. Appl. Phys. 49, 3289 (1978).

    Article  Google Scholar 

  34. P. Czaja, W. Maziarz, J. Przewoznik, A. Zywczak, P. Ozga, M. Bramowicz, S. Kulesza, and J. Dutkiewicz, Intermetall 55, 1 (2014).

    Article  Google Scholar 

  35. M. Dobromir, M. Negau, and H. Chiriac, J. Optoelectron. Adv. M. 8, 1752 (2006).

    Google Scholar 

  36. M. Gogebakan, O. Uzunb, T. Karaaslanc, and M. Keskinc, J. Mater. Process. Technol. 142, e87 (2003).

    Article  Google Scholar 

  37. G. Lojen, I. Anzel, A. Kneissl, A. Krizman, E. Unterweger, B. Kosec, and M. Bizjak, J. Mater. Process. Technol. 162, 220 (2005).

    Article  Google Scholar 

  38. T.B. Matias, G.H. Asato, B.T. Ramasco, W.J. Botta, C.S. Kiminami, and C. Bolfarini, J. Mater. Res. Technol. 3, 203 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Professor Ronaldo de Biasi (Instituto Militar de Engenharia) for reading and considerably improving the article and the Carlos Chagas Foundation for Research Support from the Rio de Janeiro State (FAPERJ) and the National Council of Technological and Scientific Development from the Brazilian Government (CNPq) for supporting this study via Grants: E-26/201.759/2015, E-26/201.828/2015, E-26/010.001.262/2015, and 449472-2014-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Jogaib Fernandes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, D.J., Elias, C.N., de Souza Resende, C.R. et al. Mechanical Strength and Surface Roughness of Magnesium-Based Metallic Glasses. JOM 69, 1175–1184 (2017). https://doi.org/10.1007/s11837-016-1964-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1964-4

Keywords

Navigation