Skip to main content
Log in

Plasma-Sprayed Ceramic Coatings for Barrier Applications Against Molten Uranium Corrosion

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Ceramic coatings are applied on engineering components for protecting them from large thermal load and hot corrosion. Choices of coating material for protection against hot corrosion by uranium are few, because of its high reactivity. Yttrium oxide has a high melting temperature and is inert towards uranium. Therefore, yttrium oxide coatings are effective as a barrier against hot corrosion by uranium and its alloys. This paper gives a summary of the developmental work on plasma-sprayed yttria coatings for corrosion barrier applications against molten uranium. Results show that plasma-sprayed yttria coatings offer a long-term solution to hot corrosion problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Vaßen, M. Ophelia-Jarligo, T. Steinke, D. Emil-Mack, and D. Stöver, Surf. Coat. Technol. 205, 938 (2010).

    Article  Google Scholar 

  2. David R. Clarke, Matthias Oechsner, and Nitin P. Padture, MRS Bull. 37, 891–898 (2012).

    Article  Google Scholar 

  3. N.P. Padture, M. Gell, and E.H. Jordan, Science 296, 280 (2002).

    Article  Google Scholar 

  4. C.G. Levi, Curr. Opin. Solid State Mater. Sci. 8, 77–91 (2004).

    Article  Google Scholar 

  5. S. Sampath, U. Schulz, M.O. Jarligo, and S. Kuroda, MRS Bull. 37, 903–910 (2012).

    Article  Google Scholar 

  6. A.G. Evans, D.R. Clarke, and C.G. Levi, J. Eur. Ceram. Soc. 28, 1405 (2008).

    Article  Google Scholar 

  7. T.N. Rhys-Jones, Corros. Sci. 29, 623–646 (1989).

    Article  Google Scholar 

  8. M.J. Pomeroy, Mater. Des. 26, 223–231 (2005).

    Article  Google Scholar 

  9. P. Poza and P.S. Grant, Surf. Coat. Technol. 201, 2887–2896 (2006).

    Article  Google Scholar 

  10. R.L. Jones, Metallurgical and Ceramic Protective Coatings (London: Chapman and hall, 1996).

    Google Scholar 

  11. F. Reidenbach, ASM Handbook: Surface Engineering, Vol. 5 (Materials Park: ASM International, 1994).

    Google Scholar 

  12. R.B. Hiemann, (New York: VCH Publishers Inc, 1996).

  13. P. Fauchais, G. Montavon, and G. Bertrand, J. Thermal Spray Technol. 19, 56–80 (2010).

    Article  Google Scholar 

  14. L. Pauloski, (Chichester: Wiley, 1995).

  15. P. Fauchais, A. Vardelle, and B.J. Dussoubs, Thermal Spray Technol. 10, 44–66 (2001).

    Article  Google Scholar 

  16. P. Fauchais, J. Phys. D 37, R86 (2004).

    Article  Google Scholar 

  17. E. Pfdender, Plasma Chem. Plasma Process. 19, 1–31 (1999).

    Article  Google Scholar 

  18. R.A. Miller, J. Therm. Spray Technol. 6, 35–42 (1997).

    Article  Google Scholar 

  19. Jeanine T. DeMasi-Marcin and Dinesh K. Gupta, Surf. Coat. Technol. 68, 1–9 (1994).

    Article  Google Scholar 

  20. W.J. Lackey, D.P. Stinton, G.A. Cerny, A.C. Schaffhauser, and L.L. Fehrenbacher, Adv. Ceram. Mater. 2, 24–30 (1987).

    Google Scholar 

  21. J. Thornton, Mater. Forum 22, 159–181 (1998).

    Google Scholar 

  22. D. Matejka, B. Benko, (Chichester: Wiley, 1989).

  23. S. Sampath, Int. J. Mater. Prod. Technol. 35, 425–448 (2009).

    Article  Google Scholar 

  24. T.M. Pollock, D.M. Lipkin, and K.J. Hemker, MRS Bull. 37, 923–931 (2012).

    Article  Google Scholar 

  25. S. Bose and J. de Masi-Marcin, J. Therm. Spray Technol. 6, 99–104 (1997).

    Article  Google Scholar 

  26. N. Curry, N. Markocsab, X. H.Li, A. Tricoire, and M. Dorfman, J. Thermal Spray Technol. 20, 108 (2008).

    Google Scholar 

  27. A. Feuersein, J. J.Knapp, T. Taylor, A. Ashary, A. Bolcavage, and N. Hitchman, J. Thermal Spray Technol. 17, 199 (2008).

    Article  Google Scholar 

  28. Robert Vaßen, Yutaka Kagawa, Ramesh Subramanian, Paul Zombo, and Dongming Zhu, MRS Bull. 37, 911–916 (2012).

    Article  Google Scholar 

  29. T.S. Sidhu, A. Malik, S. Prakash, and R.D. Agrawal, J. Therm. Spray Technol. 16, 844–849 (2007).

    Article  Google Scholar 

  30. R.A. Mahesh, R. Jayaganthan, and S. Prakash, Mater. Chem. Phys. 111, 524–533 (2008).

    Article  Google Scholar 

  31. S.H. Lee, C.H. Cho, Y.S. Lee, H.S. Lee, and J.-G. Kim, Korean J. Chem. Eng. 27, 1786–1790 (2010).

    Article  Google Scholar 

  32. K.H. Kim, C.T. Lee, C.B. Lee, R.S. Fielding, and J.R. Kennedy, Thin Solid Films 519, 6969–6973 (2011).

    Article  Google Scholar 

  33. P.V. Ananthapadmanabhan, S. Ramanathan, K.P. Sreekumar, R.U. Satpute, T.R.G. Kutty, M.R. Gonal, and L.M. Gantayet, Mater. Chem. Phys. 106, 416–421 (2007).

    Article  Google Scholar 

  34. N. Alangi, J. Mukherjee, P. Anupama, M.K. Verma, Y. Chakravarthy, P.V.A. Padmanabhan, A.K. Das, and L.M. Gantayet, J. Nucl. Mater. 410, 39–45 (2011).

    Article  Google Scholar 

  35. Moshe Kuznietz, Zvi Livne, Carlos Cotler, and Gidon Erez, J. Nucl. Mater. 160, 69–74 (1988).

    Article  Google Scholar 

  36. C.E. Holcombe and G.L. Powell, J. Nucl. Mater. 49, 238–240 (1973).

    Article  Google Scholar 

  37. Moshe Kuznietz and Carlos Cotler, J. Nucl. Mater. 160, 196–200 (1988).

    Article  Google Scholar 

  38. D. Das, S.R. Dharwadkar, and M.S. Chandrasekharaiah, J. Nucl. Mater. 97, 88–92 (1981).

    Article  Google Scholar 

  39. M. Kuznietz, Z. Livne, C. Cotler, G. Erez, J. Nucl. Mater. 152 (1988).

  40. J. Sure, C.J. Rao, P. Venkatesh, B. Prabhakara Reddy, C. Mallika, and U. Kamachi Mudali, Ceram. Int. 40, 6509–6523 (2014).

    Article  Google Scholar 

  41. P.V. Ananthapadmanabhan, T.K. Thiyagarajan, K.P. Sreekumar, and N. Venkatramani, Scr. Mater. 50, 143–147 (2004).

    Article  Google Scholar 

  42. B. Saruhan, P. Francois, K. Fritscher, and U. Schulz, Surf. Coat. Technol. 182, 175–183 (2004).

    Article  Google Scholar 

  43. Z.G. Liu, J.H. Ouyang, B.H. Wang, Y. Zhou, and J. Li, J. Alloy. Compd. 466, 39 (2008).

    Article  Google Scholar 

  44. Z.H. Xu, L.M. He, R.D. Mu, S.M. He, and X.Q. Cao, J. Alloy. Compd. 492, 701–705 (2010).

    Article  Google Scholar 

  45. X. Cao, R. Vaßen, W. Fischer, F. Tietz, W. Jungen, and D. Stöver, Adv. Mater. 15, 1438–1442 (2003).

    Article  Google Scholar 

  46. Y. Wang, H.B. Guo, and S.K. Gong, Ceram. Int. 35, 2639–2644 (2009).

    Article  Google Scholar 

  47. C.S. Ramchandran, V. Balasubramanian, and P.V. Ananthpadmanabhan, Ceram. Int. 39, 1413–1431 (2013).

    Article  Google Scholar 

  48. C.S. Ramchandran, V. Balasubramanian, and P.V. Ananthapadmanabhan, Vacuum 97, 81–95 (2013).

    Article  Google Scholar 

  49. S. Yugeswaran, A. Kobayashi, and P.V. Ananthapadmanabhan, J. Eur. Ceram. Soc. 32, 823 (2012).

    Article  Google Scholar 

  50. S. Yugeswaran, A. Kobayashi, B. Selvan, and P.V. Ananthapadmanabhan, Vacuum 88, 139–143 (2013).

    Article  Google Scholar 

  51. S. Yugeswaran, A. Kobayashi, and P.V. Ananthapadmanabhan, Mater. Sci. Eng. B 177, 536 (2012).

    Article  Google Scholar 

  52. Z. Chen, J. Mabon, J.G. Wen, and R. Trice, J. Eur. Ceram. Soc. 29, 1647 (2009).

    Article  Google Scholar 

  53. C.E. Holcombe and J.G. Banker, Metall. Trans. B 9, 317–319 (1978).

    Article  Google Scholar 

  54. P.S. Chen, W.C. Stevens, C.L. Trybus (6th International Conference on Surface Modification Technology, Chicago, IL, November 1992).

  55. P.V. Ananthapadmanabhan, T.K. Thiyagarajan, K.P. Sreekumar, R.U. Satpute, N. Venkatramani, and K. Ramachandran, Surf. Coat. Technol. 168, 231–240 (2003).

    Article  Google Scholar 

  56. I. Barin and G. Platzki, Thermochemical Data of pure Substances (Weinheim: VCH Publishers, 1995).

    Book  Google Scholar 

  57. Y. Hoshino, K. Ota, S. Yamagami, K. Endo, Electrochemical Society Proceedings, Proceedings of the Tenth International Symposium on Molten Salts (vol. 96, 1996), pp. 222–229.

  58. T.B. Massalski, J.L. Murrey, L.H. Bennet, H. Baker, (Ohio: American Society for Metals, 1986).

  59. J.B. Condon and C.E. Holcombe, J. Less Common Metals 55, 297–298 (1977).

    Article  Google Scholar 

  60. T.K. Thiyagarajan, K.P. Sreekumar, B. Selvan, V. Ramachandran, and P.V.A. Padmanabhan, J. Phys. 208, 1–11 (2010).

    Google Scholar 

  61. T.K. Thiyagarajan, P.V. Ananthapadmanabhan, K.P. Sreekumar, Y. Chakravarthy, A.K. Das, and L.M. Gantayet, Surf. Eng. 28, 646–656 (2012).

    Article  Google Scholar 

  62. H. Schlichting, Boundary Layer Theory, 6th ed. (New York: McGraw-Hill, 1968).

    Google Scholar 

  63. A.B. Murphy and C.J. Arundell, Plasma Chem. Plasma Process. 14, 451 (1994).

    Article  Google Scholar 

  64. G. Trapaga, R. Westhoff, J. Szekely, J. Fincke and W. D. Swank, MRS Proceedings, 190, 191 10.1557 (1990), pp. 190–191.

  65. C. Tournier, B. Lorrian, F. Le Guyadec, and N. Eustathopoulos, J. Mater. Sci. Lett. 15, 485–489 (1996).

    Article  Google Scholar 

  66. J.W. Koger, C. E. Holcombe, J. G. Banker, 39, 297 (1976).

  67. J.A. Cahill and A.D. Kirshenbaum, J. Inorg. Nucl. Chem. 27, 73–76 (1965).

    Article  Google Scholar 

  68. Y.H. Kim, H.T. Kim, Y.M. Woo, K.H. Kim, and C.B. Lee, Nucl. Eng. Technol. 45, 683–688 (2013).

    Article  Google Scholar 

  69. C. Tournier, B. Lorrain, F. Le Guyadec, L. Coudurier, and N. Eustathopoulos, J. Nucl. Mater. 254, 215–220 (1998).

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank Mr. A. Nagaraj, Laser and Plasma Technology Division, BARC, for his help in the long-duration corrosion experiments. The authors also acknowledge with thanks the services of Radio Metallurgy Division, BARC, for DTA experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Ananthapadmanabhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ananthapadmanabhan, P.V., Chakravarthy, Y., Chaturvedi, V. et al. Plasma-Sprayed Ceramic Coatings for Barrier Applications Against Molten Uranium Corrosion. JOM 67, 1554–1564 (2015). https://doi.org/10.1007/s11837-015-1455-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1455-z

Keywords

Navigation