Skip to main content
Log in

Synthesis of Sialon-SiC Composites from Kyanite Tailings by Carbothermal Reduction Nitridation

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Sialon-SiC composites were synthesized from kyanite tailings via the carbothermal reduction nitridation (CRN) technique. The phase composition, morphology, and microstructure of the CRN samples were investigated by x-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, and elected-area electron diffraction. A brief discussion on the synthesis mechanism of CRN process was investigated based on the thermodynamic analysis of the SiO2-Al2O3-C-N2 system. The results show the phase compositions depended on the synthesis temperature. With the increasing heating temperature, SiO2 was first changed into Si2N2O and then transformed into Si3Al3O3N5 through reacting with N2, Al2O3, and C. At the same time, the excess SiO2 changed into SiC by a carbothermal reduction reaction. The optimized synthesis temperature for the CRN reaction was found to be at 1550°C for 4 h. The Si3Al3O3N5 and SiC phases were proved coexisting in the same CRN particle. This transformation provided a feasible utilization route of kyanite tailings for high-temperature application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.E. Gilbert and A. Mosset, Mater. Res. Bull. 32, 1441 (1997).

    Article  Google Scholar 

  2. S.K. Andersson, O. Staaf, P.O. Olsson, A. Malmport, and C.G. Ribbing, Opt. Mater. 10, 85 (1998).

    Article  Google Scholar 

  3. T. Ekström, K.J. Mackenzie, I.W. Brown, and G.V. White, J. Mater. Chem. 8, 977 (1998).

    Article  Google Scholar 

  4. B. Joshi, H.H. Lee, Y.H. Kim, Z.Y. Fu, K. Niihara, and S.W. Lee, Mater. Lett. 80, 178 (2012).

    Article  Google Scholar 

  5. A.Y. Ku, C. Dosch, T.R. Grossman, J.L. Herzog, A.F. Maricocchi, D. Polli, and D.M. Lipkin, JOM 66, 2355 (2014).

    Article  Google Scholar 

  6. M.L. Bustamante, G. Gaustad, and M. Goe, JOM 66, 2340 (2014).

    Article  Google Scholar 

  7. H. Zhang, B. Han, and Z. Liu, Mater. Res. Bull. 41, 1681 (2006).

    Article  Google Scholar 

  8. Y. Akimune, N. Hirosaki, and T. Ogasawara, J. Mater. Sci. Lett. 10, 223 (1991).

    Article  Google Scholar 

  9. C.R. Rambo and H. Sieber, J. Mater. Sci. 41, 3315 (2006).

    Article  Google Scholar 

  10. N. Liu, Y. Wen, L. Gu, and L. Guo, J. Chin. Ceram. Soc. 40, 366 (2012).

    Google Scholar 

  11. X.H. Du, Z.T. Sui, G.R. Zhang, and W.M. Zhang, J. Inorg. Mater. 12, 814 (1997).

    Google Scholar 

  12. Q. Liu, L. Gao, D.S. Yan, and D.P. Thompson, Mater. Sci. Eng. A 269, 1 (1999).

    Article  Google Scholar 

  13. J. Mukerji and S. Bandyopadhyay, Adv. Ceram. Mater. 3, 369 (1988).

    Google Scholar 

  14. R. Ramesh, M.J. Pomeroy, H. Chu, and P.K. Datta, J. Eur. Ceram. Soc. 15, 1007 (1995).

    Article  Google Scholar 

  15. P.W. Harben, The Industrial Minerals Handbook (Warwick, NY: Warwick Printing, 1995).

    Google Scholar 

  16. S. Somiya, R.F. Davis, and J.A. Pask, Mullite and Mullite Matrix Composites (Westerville, OH: American Ceramic Society, 1990).

    Google Scholar 

  17. V.V. Shiptsov, Novye Ogneup. 8, 78 (2005).

    Google Scholar 

  18. H.S. Hao, L.H. Xu, X.M. Ni, J.Y. Yang, Y.J. Guo, Z.S. Zhang, and X.W. Li, Rare Met. Mater. Eng. S2, 670 (2009).

    Google Scholar 

  19. X.C. Li, B.Q. Zhu, and F. Zhao, Mater. Sci. Forum 745, 663 (2013).

    Article  Google Scholar 

  20. Z.Y. Chen, Chemical Thermodynamics of Refractories, 1st ed. (Beijing: Metallurgical Industry Press, 2005).

    Google Scholar 

  21. D.L. Ye and J.H. Hu, Practical Handbook of Thermodynamic Data in Inorganic Substances, 2nd ed. (Beijing: Metallurgical Industry Press, 2001).

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51172216) and the Project of China Geological Survey (No. 12120113088000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghao Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, X., Fang, M., Huang, Z. et al. Synthesis of Sialon-SiC Composites from Kyanite Tailings by Carbothermal Reduction Nitridation. JOM 67, 1379–1384 (2015). https://doi.org/10.1007/s11837-015-1423-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1423-7

Keywords

Navigation