Skip to main content
Log in

Microstructure and Crystallographic Texture Evolution During the Friction-Stir Processing of a Precipitation-Hardenable Aluminum Alloy

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Friction-stir processing (FSP) has been proven as a successful method for the grain refinement of high-strength aluminum alloys. The most important attributes of this process are the fine-grain microstructure and characteristic texture, which impart suitable properties in the as-processed material. In the current work, FSP of the precipitation-hardenable aluminum alloy 2219 has been carried out and the consequent evolution of microstructure and texture has been studied. The as-processed materials were characterized using electron back-scattered diffraction, x-ray diffraction, and electron probe microanalysis. Onion-ring formation was observed in the nugget zone, which has been found to be related to the precipitation response and crystallographic texture of the alloy. Texture development in the alloy has been attributed to the combined effect of shear deformation and dynamic recrystallization. The texture was found heterogeneous even within the nugget zone. A microtexture analysis revealed the dominance of shear texture components, with C component at the top of nugget zone and the B and A2* components in the middle and bottom. The bulk texture measurement in the nugget zone revealed a dominant C component. The development of a weaker texture along with the presence of some large particles in the nugget zone indicates particle-stimulated nucleation as the dominant nucleation mechanism during FSP. Grain growth follows the Burke and Turnbull mechanism and geometrical coalescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.C. Williams and E.A. Starke, Acta Mater. 51, 5775 (2003).

    Article  Google Scholar 

  2. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Prog. Mater Sci. 45, 103 (2000).

    Article  Google Scholar 

  3. R.Z. Valiev, A.V. Korznikov, and R.R. Mulyukov, Mater. Sci. Eng. A 168, 141 (1993).

    Article  Google Scholar 

  4. R.Z. Valiev, Nat. Mater. 3, 51 (2004).

    Article  Google Scholar 

  5. S. Suwas, R.A. Massion, L.S. Tóth, J.J. Fundenberger, and B. Beausir, Mater. Sci. Eng. A 520, 134 (2009).

    Article  Google Scholar 

  6. S. Suwas, R.A. Massion, L.S. Tóth, J.J. Fundenberger, and B. Beausir, Metall. Mater. Trans. A 37, 739 (2006).

    Article  Google Scholar 

  7. S. Roy, B.R. Nataraj, S. Suwas, S. Kumar, and K. Chattopadhyay, Mater. Des. 36, 529 (2012).

    Article  Google Scholar 

  8. S. Roy, D.S. Singh, S. Suwas, S. Kumar, and K. Chattopadhyay, Mater. Sci. Eng. A 528, 8469 (2011).

    Article  Google Scholar 

  9. S. Biswas and S. Suwas, Scripta Mater. 66, 89 (2012).

    Article  Google Scholar 

  10. N.P. Gurao, P. Kumar, A. Sarkar, H.G. Brokmeier, and S. Suwas, J. Mater. Eng. Perform. 22, 1004 (2013).

    Article  Google Scholar 

  11. R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, and A.K. Mukherjee, Scripta Mater. 42, 163 (1999).

    Article  Google Scholar 

  12. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T.G. Langdon, Scripta Mater. 35, 143 (1996).

    Article  Google Scholar 

  13. G. Sakai, Z. Horita, and T.G. Langdon, Mater. Sci. Eng. A 393, 344 (2005).

    Article  Google Scholar 

  14. K.S. Suresh, N. Kumar, R.S. Mishra, and S. Suwas, Mater. Sci. Forum 753, 247 (2013).

    Article  Google Scholar 

  15. W. Xu, J. Liu, G. Luan, and C. Dong, Mater. Des. 30, 3460 (2009).

    Article  Google Scholar 

  16. N. Nadammal, S.V. Kailas, and S. Suwas, Mater. Des. 65, 127 (2015).

    Article  Google Scholar 

  17. R.W. Fonda, K.E. Knipling, and D.J. Rowenhorst, JOM 66, 149 (2014).

    Article  Google Scholar 

  18. R. Nandan, T. Debroy, and H.K.D.H. Bhadeshia, Prog. Mater. Sci. 53, 980 (2008).

    Article  Google Scholar 

  19. K. Kumar and S.V. Kailas, Mater. Des. 29, 791 (2008).

    Article  Google Scholar 

  20. K.N. Krishnan, Mater. Sci. Eng. A 327, 246 (2002).

    Article  Google Scholar 

  21. J.J. Jonas and L.S. Toth, Scripta Metall. Mater. 27, 1575 (1992).

    Article  Google Scholar 

  22. M.A. Sutton, B. Yang, A.P. Reynolds, and R. Taylor, Mater. Sci. Eng. A 323, 160 (2002).

    Article  Google Scholar 

  23. A. Rollett, F.J. Humphreys, G.S. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena (New York: Elsevier, 2004).

    Google Scholar 

  24. K. Jata and S. Semiatin, Scripta Mater. 43, 743 (2000).

    Article  Google Scholar 

  25. T.R. McNelley, S. Swaminathan, and J.Q. Su, Scripta Mater. 58, 349 (2008).

    Article  Google Scholar 

  26. J.E. Burke and D. Turnbull, Prog. Mater. Phys. 3, 220 (1952).

    Article  Google Scholar 

  27. J.P. Nielsen, ASM Seminar Series (Metals Park: American Society for Metals, 1966).

    Google Scholar 

  28. F. Montheillet, M. Cohen, and J.J. Jonas, Acta Metall. 32, 2077 (1984).

    Article  Google Scholar 

  29. N. Hansen and B. Bay, Acta Metall. 29, 65 (1981).

    Article  Google Scholar 

  30. W. Cai, J. Mabon, and P. Bellon, Wear 267, 485 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Science and Technology (DST), Ministry of Human Resources Development (MHRD), India, for financial support and the Advanced Facility for Microscopy and Microanalysis (AFMM) at the Indian Institute of Science, Bangalore, India, for providing the characterization facilities. The authors are thankful to Vikram Sarabhai Space Centre (VSSC), Thiruvananthapuram, India for providing the aluminum alloy used in the work. N.N. is grateful to Government of Canada for Canadian Commonwealth Scholarship Program (CCSP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyam Suwas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadammal, N., Kailas, S.V., Szpunar, J. et al. Microstructure and Crystallographic Texture Evolution During the Friction-Stir Processing of a Precipitation-Hardenable Aluminum Alloy. JOM 67, 1014–1021 (2015). https://doi.org/10.1007/s11837-015-1394-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1394-8

Keywords

Navigation