Skip to main content
Log in

Pressure-Induced Foaming of Metals

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Pressure-induced foaming (PIF) of metals is a foaming technique in which blowing agent free compacted metal powders are foamed. The method consists of heating hot-compacted metallic precursors to above their melting temperature under gas overpressure and foaming them by pressure release. This study focuses on PIF of Al99.7 and AlSi7 alloys under both air or Ar and overpressures up to 9 bar. In situ x-ray radioscopy allows us to follow the foaming process and to perform quantitative analyses of expansion, foam morphology, and coalescence rate. Mass spectrometry helps to identify hydrogen as the foaming gas. Adsorbates on the former powder particles are found to be the primary gas source. Various advantages of this new method are identified and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Banhart, JOM 52, 22 (2000).

    Article  Google Scholar 

  2. C.S. Shim, N.R. Yun, I.H. Yu, and D.Y. Byun, Porous Metals and Metallic Foams: Metfoam, ed. B.-Y. Hur (Busan: Gyeongsang National University, 2012), p. 501.

    Google Scholar 

  3. J. Banhart and H.-W. Seeliger, Adv. Eng. Mater. 14, 1082 (2012).

    Article  Google Scholar 

  4. R. Neugebauer and T. Hipke, Adv. Eng. Mater. 8, 858 (2006).

    Article  Google Scholar 

  5. J. Banhart, Adv. Eng. Mater. 8, 781 (2006).

    Article  Google Scholar 

  6. P. Schäffler, G. Hanko, H. Mitterer, and P. Zach, Porous Metals and Metallic Foams: Metfoam, ed. L.P. Lefebvre, J. Banhart, and D.C. Dunand (Kyoto: The Japan Institute of Metals, 2008), p. 7.

    Google Scholar 

  7. C. Jiménez, F. Garcia-Moreno, M. Mukherjee, O. Goerke, and J. Banhart, Scripta Mater. 61, 552 (2009).

    Article  Google Scholar 

  8. A. Rack, H.M. Helwig, A. Bütow, A. Rueda, B. Matijašević-Lux, L. Helfen, J. Goebbels, and J. Banhart, Acta Mater. 57, 4809 (2009).

    Article  Google Scholar 

  9. J. Banhart, D. Bellmann, and H. Clemens, Acta Mater. 49, 3409 (2001).

    Article  Google Scholar 

  10. B. Matijasevic-Lux, J. Banhart, S. Fiechter, O. Görke, and N. Wanderka, Acta Mater. 54, 1887 (2006).

    Article  Google Scholar 

  11. F. von Zeppelin, M. Hirscher, H. Stanzick, and J. Banhart, Compos. Sci. Technol. 63, 2293 (2003).

    Article  Google Scholar 

  12. I. Duarte and J. Banhart, Acta Mater. 48, 2349 (2000).

    Article  Google Scholar 

  13. F. Simancik, K. Behulova, and L. Bors, Cellular Metals and Metal Foaming Technology: Metfoam, ed. J. Banhart, M.F. Ashby, and N.A. Fleck (Bremen: MIT Publishing, 2001), p. 89.

    Google Scholar 

  14. F. Garcia-Moreno, N. Babcsan, and J. Banhart, Colloids Surf. A 263, 290 (2005).

    Article  Google Scholar 

  15. F. Garcia-Moreno, J. Banhart, M. Haesche, K. Vignodhar, and J. Weise, Cellular Metals for Structural and Functional Applications. Cellular Metals for Structural and Functional Applications: CellMet, ed. G. Stephani and B. Kieback (Dresden: Fraunhofer IRB Verlag, 2005), p. 244.

    Google Scholar 

  16. A. Kennedy and V. Lopez, Mater. Sci. Eng. A 357, 258 (2003).

    Article  Google Scholar 

  17. V.A. Lavrenko, V.Z. Shemet, L.A. Petrov, O.A. Teplov, and S.K. Dolukhanyan, Oxid. Met. 33, 177 (1990).

    Article  Google Scholar 

  18. C. Jiménez, F. Garcia-Moreno, B. Pfretzschner, M. Klaus, M. Wollgarten, I. Zizak, G. Schumacher, M. Tovar, and J. Banhart, Acta Mater. 59, 6318 (2011).

    Article  Google Scholar 

  19. C. Jiménez, F. Garcia-Moreno, A. Rack, R. Tucoulou, M. Klaus, B. Pfretzschner, T. Rack, P. Cloetens, and J. Banhart, Scripta Mater. 66, 757 (2012).

    Article  Google Scholar 

  20. M. Mukherjee, F. Garcia-Moreno and J. Banhart, Scripta Mater. 63, 235 (2010).

    Article  Google Scholar 

  21. U. Ramamurty and A. Paul, Acta Mater. 52, 869 (2004).

    Article  Google Scholar 

  22. K. Renger and H. Kaufmann, Adv. Eng. Mater. 7, 117 (2005).

    Article  Google Scholar 

  23. D.E.J. Talbot, Int. Metall. Rev. 20, 166 (1975).

    Google Scholar 

  24. H.E. Friedrich and B.L. Mordike, Magnesium Technology: Metallurgy, Design Data, Applications (New York: Springer, 2006).

    Google Scholar 

  25. S. Asavavisithchai and A.R. Kennedy, J. Colloid Interface Sci. 297, 715 (2006).

    Article  Google Scholar 

  26. A. Dudka, F. Garcia-Moreno, N. Wanderka, and J. Banhart, Acta Mater. 56, 3990 (2008).

    Article  Google Scholar 

  27. C. Körner, M. Arnold, and R.F. Singer, Mater. Sci. Eng. A 396, 28 (2005).

    Article  Google Scholar 

  28. G.S. Vinod Kumar, M. Mukherjee, F. Garcia-Moreno, and J. Banhart, Metall. Mater. Trans. A 44, 419 (2013).

    Article  Google Scholar 

  29. F. Garcia-Moreno and J. Banhart, Colloids Surf. A 309, 264 (2007).

    Article  Google Scholar 

  30. F. Garcia-Moreno and J. Banhart, European patent EP 1 915 226 B1 (2007), p. 10.

  31. A. Ünal, Mater. Sci. Technol. 3, 1029 (1987).

    Article  Google Scholar 

  32. F. Garcia-Moreno, N. Babcsán, and J. Banhart, Metfoam, ed. N.K.H. Nakajima (Kyoto: The Japan Institute of Metals, 2006), p. 129.

    Google Scholar 

  33. F. Garcia-Moreno, M. Fromme, and J. Banhart, Adv. Eng. Mater. 6, 416 (2004).

    Article  Google Scholar 

  34. M.A. Rodriguez-Perez, E. Solorzano, J.A. De Saja, and F. Garcia-Moreno, Porous Metals and Metallic Foams: Metfoam, ed. L.P. Lefebvre, J. Banhart, and D.C. Dunand (Montreal: DEStech, 2008), p. 75.

    Google Scholar 

  35. F. Garcia-Moreno, E. Solorzano, and J. Banhart, Soft Matter 7, 9216 (2011).

    Article  Google Scholar 

  36. A. Haibel, A. Rack, and J. Banhart, Appl. Phys. Lett. 89, 154102 (2006).

    Article  Google Scholar 

  37. M. Mukherjee, F. Garcia-Moreno, and J. Banhart, Acta Mater. 58, 6358 (2010).

    Article  Google Scholar 

  38. C. Jiménez, F. Garcia-Moreno, B. Pfretzschner, P.H. Kamm, T.R. Neu, M. Klaus, C. Genzel, A. Hilger, I. Manke, and J. Banhart, Adv. Eng. Mater. 15, 141 (2013).

    Article  Google Scholar 

  39. M. Mukherjee, F. Garcia-Moreno, and J. Banhart, Metall. Mater. Trans. B 41, 500 (2010).

    Article  Google Scholar 

  40. M. Mukherjee, F. Garcia-Moreno, C. Jiménez, and J. Banhart, Adv. Eng. Mater. 12, 472 (2010).

    Article  Google Scholar 

  41. C. Qiu, G.B. Olson, S.M. Opalka, and D.L. Anton, J.P.E.D. 25, 520 (2004).

    Google Scholar 

  42. H. Nakajima, T. Ikeda, and S.K. Hyun, Adv. Eng. Mater. 6, 377 (2004).

    Article  Google Scholar 

  43. P. Lutze and J. Ruge, Metall 8, 741 (1990).

    Google Scholar 

  44. J.T. Staley, M. Tiryakioğlu, and J. Campbell, Mater. Sci. Eng. A 460–461, 324 (2007).

    Article  Google Scholar 

  45. S. Khoobiar, J.L. Carter, and P.J. Lucchesi, J. Phys. Chem. 72, 1682 (1968).

    Article  Google Scholar 

  46. F.o. Rouquerol, Adsorption by Powders and Porous Solids: Principles, Methodology and Applications (Waltham, MA: Academic Press, 1999).

    Google Scholar 

  47. D.M. Ruthven, Principles of Adsorption and Adsorption Processes (New York: Wiley, 1984).

    Google Scholar 

  48. P. Kisliuk, J. Phys. Chem. Solids 3, 95 (1957).

    Article  Google Scholar 

  49. N. Cabrera and N.F. Mott, Rep. Prog. Phys. 12, 163 (1949).

    Article  Google Scholar 

  50. A.V. Krajnikov, M. Gastel, H.M. Ortner, and V.V. Likutin, Appl. Surf. Sci. 191, 26 (2002).

    Article  Google Scholar 

  51. L. Kowalski, B.M. Korevaar, and J. Duszczyk, J. Mater. Sci. 27, 2770 (1992).

    Article  Google Scholar 

  52. G. Staniek and K. Wefers, Aluminium 67, 160 (1991).

    Google Scholar 

  53. J.L. Estrada, J. Duszczyk, and B.M. Korevaar, J. Mater. Sci. 26, 1431 (1991).

    Article  Google Scholar 

  54. S. Meng, E. Wang, and S. Gao, Phys. Rev. B: Condens. Matter 69, 155406 (2004).

    Article  Google Scholar 

  55. A. Nylund and I. Olefjord, Mater. Sci. Eng. A 134, 1225 (1991).

    Article  Google Scholar 

  56. J. Zhou, J. Duszczyk, and B.M. Korevaar, J. Mater. Sci. 26, 3292 (1991).

    Article  Google Scholar 

  57. J.R. Chen, G.Y. Hsiung, Y.J. Hsu, S.H. Chang, C.H. Chen, W.S. Lee, J.Y. Ku, C.K. Chan, L.W. Joung, and W.T. Chou, Appl. Surf. Sci. 169, 679 (2001).

    Article  Google Scholar 

  58. W.H. Krueger and S.R. Pollack, Surf. Sci. 30, 280 (1972).

    Article  Google Scholar 

  59. L. Volpe, Key Eng. Mater. 20–28, 4091 (1991).

    Google Scholar 

  60. L. Bonaccorsi, E. Proverbio, and N. Raffaele, J. Mater. Sci. 45, 1514 (2010).

    Article  Google Scholar 

  61. A.R. Kennedy, Powder Metall. 45, 75 (2002).

    Article  Google Scholar 

  62. G.B. Schaffer, B.J. Hall, S.J. Bonner, S.H. Huo, and T.B. Sercombe, Acta Mater. 54, 131 (2005).

    Google Scholar 

  63. F. Garcia-Moreno, M. Mukherjee, C. Jiménez, A. Rack, and J. Banhart, Metals 2, 10 (2011).

    Article  Google Scholar 

  64. F. Garcia-Moreno, M. Mukherjee, C. Jiménez, and J. Banhart, Trans. Indian Inst. Met. 62, 451 (2009).

    Article  Google Scholar 

  65. C. Jiménez, F. García-Moreno, J. Banhart, and G. Zehl, Porous Metals and Metallic Foams: Metfoam, ed. L.-P. Lefebvre, J. Banhart, and D. Dunand (Montréal: DEStech, 2008), p. 59.

    Google Scholar 

Download references

Acknowledgements

Funding by the European Space Agency ESA (Project μG-Foam, AO–99–075) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco García-Moreno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Moreno, F., Mukherjee, M., Jiménez, C. et al. Pressure-Induced Foaming of Metals. JOM 67, 955–965 (2015). https://doi.org/10.1007/s11837-015-1331-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1331-x

Keywords

Navigation