Skip to main content
Log in

Phosphorus: The Noose of Sustainability and Renewability in Steelmaking

  • Published:
JOM Aims and scope Submit manuscript

Abstract

With rising ore prices and the continued demand for higher quality steels, much work has been carried out into refining and control prospects of steel chemistry. As several technologies around the world are exploring the control of phosphorus with high priority, an overview of current knowledge, ongoing research, and specific interest areas is presented. The reliance of the basic oxygen furnace steelmaking on iron ore quality is considered with regard to impurity levels, as well as the phosphorus content of direct reduced iron introduction to the electric arc furnace process. This article reviews methods to control phosphorus in steelmaking and proposes a practical approach based on laboratory-scale equilibrium experiments. The article ends by exploring energy savings in steelmaking as well as speculating on further avenues of steel production profitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. World Steel Association, World Crude Steel Production (Brussels, Belgium: World Steel Association, 2013), https://www.worldsteel.org/dms/internetDocumentList/press-release-downloads/2013/April-2013-Production.

  2. World Steel Association, Steel Statistical Yearbook 2013 Production (Brussels: World Steel Association, 2013).

    Google Scholar 

  3. Natural Gas Monthly Price, http://www.indexmundi.com/commodities/?commodity=natural-gas.

  4. Iron Ore Monthly Price, http://www.indexmundi.com/commodities/?commodity=iron-ore.

  5. R. Husken, R. Fechner, and J. Cappel, Iron Steel Technol. 8, 46 (2011).

    Google Scholar 

  6. I. Olefjord, Int. Met. Rev. 23, 149 (1978).

    Article  Google Scholar 

  7. J.R. Low, D.F. Stein, A.M. Turkalo, and R.P. Laforce, Trans. AIME 242, 14 (1968).

    Google Scholar 

  8. C.L. Briant and S.K. Banerji, In Treatise on Materials Science and Technology: Embrittlement of Engineering Alloys, 1st ed. (New York, NY: Academic Press, 1983), pp. 21–58.

    Google Scholar 

  9. G. Dieter and D. Bacon, Mechanical Metallurgy, 3rd ed. (New York, NY: McGraw-Hill, 1986).

    Google Scholar 

  10. W.M. Guo, Z.C. Wang, Y. de Li, N. Xu, and J. Bo Shi, Metallogr. Microstruct. Anal. 2, 249 (2013).

    Article  Google Scholar 

  11. T.A. Boom, D.R. Fosnacht, and D.M. Haezebrouck, Ironmaker Steelmaker 17, 59 (1990).

    Google Scholar 

  12. World Steel Association, Electric Arc Furnace Simulation User Guide (Brussels: World Steel Association, 2006).

    Google Scholar 

  13. T.A. Boom, D.R. Fosnacht, and D.M. Haezebrouck, Ironmaker Steelmaker 17, 35 (1990).

    Google Scholar 

  14. N. Sano, W.-K. Lu, and P.V. Riboud, Advanced Physical Chemistry for Process Metallurgy, 1st ed. (New York: Academic Press, 1997), pp. 45–56.

    Google Scholar 

  15. M.A. Tayeb, R. Fruehan, and S. Sridhar (Paper presented at the AISTech Conference, Indianapolis, IN, 2014).

  16. M.A. Tayeb, R. Fruehan, and S. Sridhar, Liquid Metal Processing and Casting, ed. M.J.M. Krane, A. Jardy, R.L. Williamson, and J.J. Beaman (Warrendale, PA: TMS; Hoboken, NJ: Wiley & Sons, 2013), pp. 353–358.

  17. C.P. Manning and R.J. Fruehan, Metall. Mater. Trans. B 44, 37 (2013).

    Article  Google Scholar 

  18. P. Wei, M. Sano, M. Hirasawa, and K. Mori, ISIJ Int. 31, 358 (1991).

    Article  Google Scholar 

  19. P. Wei, M. Sano, M. Hirasawa, and K. Mori, ISIJ Int. 33, 479 (1993).

    Article  Google Scholar 

  20. J. Ekengård, A.M.T. Andersson, and P.G. Jönsson, Ironmaking Steelmaking 35, 575 (2008).

    Article  Google Scholar 

  21. J. Ekengård (Ph.D. dissertation, Stockholm, Sweden, 2004).

  22. Y. Chung and A.W. Cramb, Philos. Trans. R. Soc. A 356, 981 (1998).

    Article  Google Scholar 

  23. A. Jakobsson, M. Nasu, J. Mangwiru, K.C. Mills, and S. Seetharaman, Philos. Trans. R. Soc. A 365, 995 (1998).

    Article  Google Scholar 

  24. G.N. Shannon, R.J. Fruehan, and S. Sridhar, Metall. Mater. Trans. B 40, 727 (2009).

    Article  Google Scholar 

  25. P.V. Riboud and L.D. Lucas, Can. Metall. Q. 20, 199 (1981).

    Article  Google Scholar 

  26. M. Han and Y. Zhao, Expert Syst. Appl. 38, 14786 (2011).

    Article  Google Scholar 

  27. K.S. Coley and G. Brown (Paper presented at the International Conference on the Technology of Ironmaking and Steelmaking, Jamshedphur, India, 2013).

  28. G. Brooks, Y. Pan, and K. Coley, Metall. Mater. Trans. B 36, 525 (2005).

    Article  Google Scholar 

  29. R.J. Fruehan, O. Fortini, H.W. Paxton, and R. Brindle, Report to the U.S. Department of Energy, Office of Industrial Technologies (Washington, DC: Department of Energy, 2000).

  30. M.A. Tayeb, Introduction to EAF Steelmaking (Jubail: SABIC, 2009).

    Google Scholar 

  31. R.J. Fruehan, The Making, Shaping and Treating of Steel, 11th ed. (Pittsburgh: The AISE Steel Foundation, 1998).

    Google Scholar 

  32. D. Zuliani, S. Khouri, and V. Scipolo, Iron Steel Technol. 10, 160 (2013).

    Google Scholar 

  33. H. Tanabe and M. Nakada, NKK Tech. Rev. 88, 18 (2003).

    Google Scholar 

  34. N. Sasaki, Y. Ogawa, K.-I. Miyamoto, and S. Mukawa, Nippon Steel Tech. Report 104, 26 (2013).

    Google Scholar 

  35. W.T. Jeans, ISIJ Int. 318 (1884).

  36. M.A. Tayeb, R. Fruehan, and S. Sridhar (Paper presented at the 5th International Congress on the Science and Technology of Steelmaking, Dresden, Germany, 2012).

  37. T.P. Battle and J.M. McClelland, AlSTech 2011 Conference Proc. (Warrendale, PA: AIST, 2011), pp. 943–954.

  38. Association for Iron & Steel Technology, 2012 EAF Roundup (Warrendale, PA: AIST, 2012).

    Google Scholar 

  39. R. Lule, F. Lopez, J. Espinoza, R. Torres, and R.D. Morales, The Production of Steels: Applying 100% DRI for Nitrogen Removal (Charlotte, NC: Midrex, 2009).

    Google Scholar 

  40. E. Pretorius, H. Oltmann, and J. Jones, EAF Fundamentals (York, PA: LWB Refractories).

  41. Update Client Magazine, ArcelorMittal (2012).

  42. U.S. Environmental Protection Agency, Available and Emerging Technologies for Reducing Greenhouse Gas Emissions from the Iron and Steel Industry (Washington, DC: U.S. Environmental Protection Agency, 2012).

  43. Z.-H. Tian, B.-H. Li, X.-M. Zhang, and Z.-H. Jiang, J. Iron. Steel Res. Int. 16, 6 (2009).

    Article  Google Scholar 

  44. H. Yi, G. Xu, H. Cheng, J. Wang, Y. Wan, and H. Chen, Proc. Environ. Sci. 16, 791 (2012).

    Article  Google Scholar 

  45. L.J. Westholm, Water 2, 826 (2010).

    Article  Google Scholar 

  46. J. Geiseler, Waste Manag. 16, 59 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Tayeb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tayeb, M.A., Spooner, S. & Sridhar, S. Phosphorus: The Noose of Sustainability and Renewability in Steelmaking. JOM 66, 1565–1571 (2014). https://doi.org/10.1007/s11837-014-1093-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1093-x

Keywords

Navigation