Skip to main content

Advertisement

Log in

Thermal Recycling of Waelz Oxide Using Concentrated Solar Energy

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The dominating Zn recycling process is the so-called Waelz process. Waelz oxide (WOX), containing 55–65% Zn in oxidic form, is mainly derived from electric arc furnace dust produced during recycling of galvanized steel. After its wash treatment to separate off chlorides, WOX is used as feedstock along with ZnS concentrates for the electrolytic production of high-grade zinc. Novel and environmentally cleaner routes for the purification of WOX and the production of Zn are investigated using concentrated solar energy as the source of high-temperature process heat. The solar-driven clinkering of WOX and its carbothermal reduction were experimentally demonstrated using a 10 kWth packed-bed solar reactor. Solar clinkering at above 1265°C reduced the amount of impurities below 0.1 wt.%. Solar carbothermal reduction using biocharcoal as reducing agent in the 1170–1320°C range yielded 90 wt.% Zn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. V. Popovici (Paper presented at the 5th Global Slag Conference, Brussels, 23–24 November 2009).

  2. T. Sofilic, A. Rastovcan-Mioc, S. Cerjan-Stefanovic, V. Novosel-Radovic, and M. Jenko, J. Hazard. Mater. 109, 59 (2004).

    Article  Google Scholar 

  3. A.J. Xu, Q.X. Yang, B. Gustafsson, F. Wang, J.L. Li, and B. Bjorkman, J. Iron. Steel Res. Int. 17, 132 (2010).

    Google Scholar 

  4. J. Ruetten, SEAISI Q. J. 35, 13 (2006).

    Google Scholar 

  5. N.L. Piret, World Metall. Erzmet. 65, 306 (2012).

    Google Scholar 

  6. M.H. Morcali, O. Yucel, A. Aydin, and B. Derin, J. Min. Metall. Sect. B 48, 173 (2012).

    Article  Google Scholar 

  7. N. Leclerc, E. Meux, and J.M. Lecuire, J. Hazard. Mater. 91, 257 (2002).

    Article  Google Scholar 

  8. C. Caravaca, A. Cobo, and F.J. Alguacil, Resour. Conserv. Recycl. 10, 35 (1994).

    Article  Google Scholar 

  9. J. Antrekowitsch and H. Antrekowitsch, JOM 53, 26 (2001).

    Article  Google Scholar 

  10. B. Schaffner, W. Hoffelner, H.Y. Sun, and A. Steinfeld, Environ. Sci. Technol. 34, 4177 (2000).

    Article  Google Scholar 

  11. B. Schaffner, A. Meier, D. Wuillemin, W. Hoffelner, and A. Steinfeld, Environ. Sci. Technol. 37, 165 (2003).

    Article  Google Scholar 

  12. N. Menad, J.N. Ayala, F. Garcia-Carcedo, E. Ruiz-Ayucar, and A. Hernandez, Waste Manag. 23, 483 (2003).

    Article  Google Scholar 

  13. C. Wieckert and A. Steinfeld, J. Sol. Energy-Trans. ASME 124, 55 (2002).

    Article  Google Scholar 

  14. C.E. Guger and F.S. Manning, Metall. Trans. 2, 3083 (1971).

    Article  Google Scholar 

  15. K.F. Blurton and A.F. Sammells, J. Power Sources 4, 263 (1979).

    Article  Google Scholar 

  16. J.R. Goldstein and B. Koretz (Paper presented at Energy Environment Economics: 28th Intersociety Energy Conversion Engineering Conference Proceedings (Iecec-93), 1993), pp. 279–284.

  17. K. Wegner, H. Ly, R. Weiss, S. Pratsinis, and A. Steinfeld, Int. J. Hydrogen Energy 31, 55 (2006).

    Article  Google Scholar 

  18. R. Weiss, H. Ly, K. Wegner, S. Pratsinis, and A. Steinfeld, AIChE J. 51, 1966 (2005).

    Article  Google Scholar 

  19. A. Steinfeld, Sol. Energy 78, 603 (2005).

    Article  Google Scholar 

  20. A. Berman and M. Epstein, Int. J. Hydrogen Energy 25, 957 (2000).

    Article  Google Scholar 

  21. E. Bilgen, M. Ducarroir, M. Foex, F. Sibieude, and F. Trombe, Int. J. Hydrogen Energy 2, 251 (1977).

    Article  Google Scholar 

  22. P.G. Loutzenhiser, M.E. Galvez, I. Hischier, A. Stamatiou, A. Frei, and A. Steinfeld, Energy Fuel 23, 2832 (2009).

    Article  Google Scholar 

  23. P.G. Loutzenhiser and A. Steinfeld, Int. J. Hydrogen Energy 36, 12141 (2011).

    Article  Google Scholar 

  24. A. Stamatiou, P.G. Loutzenhiser, and A. Steinfeld, Chem. Mater. 22, 851 (2010).

    Article  Google Scholar 

  25. J. Petrasch, P. Coray, A. Meier, M. Brack, P. Häberling, D. Wuillemin, and A. Steinfeld, J. Sol. Energy-Trans. ASME 129, 405 (2007).

    Article  Google Scholar 

  26. W.T. Welford and R. Winston, High Collection Nonimaging Optics (San Diego, CA: Academic Press, 1989).

    Google Scholar 

  27. A. Yogev, M. Epstein, and A. Kogan, Int. J. Hydrogen Energy 23, 239 (1998).

    Article  Google Scholar 

  28. C. Wieckert, A. Meier, and A. Steinfeld, J. Sol. Energy-Trans. ASME 125, 120 (2003).

    Article  Google Scholar 

  29. C. Wieckert, J. Sol. Energy-Trans. ASME 127, 425 (2005).

    Article  Google Scholar 

  30. S. Steinlechner, Waelz Oxide Characterization, unpublished report for Befesa (Leoben, Austria: Department of Metallurgy, Montan University, 2012).

  31. S. Kräupl, U. Frommherz, and C. Wieckert, J. Sol. Energy-Trans. ASME 128, 8 (2006).

    Article  Google Scholar 

  32. G. Graf, Ullmann’s Encyclopedia of Industrial Chemistry, Vol. A28 (Weinheim, Germany: VCH Verlagsgesellschaft, 1996), pp. 509–530.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Steinfeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tzouganatos, N., Matter, R., Wieckert, C. et al. Thermal Recycling of Waelz Oxide Using Concentrated Solar Energy. JOM 65, 1733–1743 (2013). https://doi.org/10.1007/s11837-013-0778-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0778-x

Keywords

Navigation