Skip to main content
Log in

Advances in Laser Surface Engineering: Tackling the Cracking Problem in Laser-Deposited Ni-Cr-B-Si-C Alloys

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Laser-deposition technologies are being increasingly used for surface modification and three-dimensional manufacturing applications. The biggest technical obstacle to a wider usage of these technologies especially for deposition of hard alloys is cracking of the deposited samples. In this work, the idea of microstructural refinement as a toughening mechanism for Ni-Cr-B-Si-C alloys deposited by laser cladding is evaluated and a new idea for reducing the cracking tendency of these alloys is proposed. The results show that although a significant refinement of the Cr-rich precipitates in these alloys could be induced by a suitable addition of Nb, the cracking susceptibility of the deposits was unchanged. This was so because the continuous network of hard eutectics was still providing an easy route for crack growth. The outcome of this work shows that an effective toughening mechanism for these alloys should include not only a refinement of the hard precipitates but also modification of the eutectic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.C. Ion, Laser Processing of Engineering Materials: Principles, Procedure and Industrial Application (Boston, MA: Elsevier/Butterworth-Heinemann, 2005), pp. 296–313.

    Book  Google Scholar 

  2. N.B. Dahotre, Laser Fabrication and Machining of Materials (New York: Springer, 2008), pp. 402–408.

    Google Scholar 

  3. V. Ocelík and J.Th.M. De Hosson, Advances in Laser Materials Processing Technology, ed. J. Lawrence, J. Pou, D.K.Y. Low, and E. Toyserkani (Oxford: Woodhead Publishing and Boca Raton, FL: CRC Press, 2010), pp. 426–458.

  4. S. Jianli, L. Yongtang, F. Jianhua, D. Qilin, and H. Dejin, International Technology and Innovation Conference 2009 (ITIC 2009), 12–14 October 2009, p. 68. doi:10.1049/cp.2009.1446.

  5. U. de Oliveira, V. Ocelík, and J.Th.M. De Hosson, Surf. Coat. Technol. 197, 127 (2005).

    Article  Google Scholar 

  6. J.Th.M. De Hosson, V. Ocelík, U.O.B. De Oliveira, and D.I. Vainchtein, Int. J. Mater. Res. 100, 1343 (2009).

    Article  Google Scholar 

  7. Y. Huang and X. Zeng, Appl. Surf. Sci. 256, 5985 (2010).

    Article  Google Scholar 

  8. E. Beyer, New Industrial Systems & Concepts for Highest Laser Cladding Efficiency. http://www.lia.org/blog/2011/05/high-performance-laser-cladding/.

  9. A. Conde, F. Zubiri, and J. de Damborenea, Mater. Sci. Eng. A 334, 233 (2002).

    Article  Google Scholar 

  10. J.M. Miguel, J.M. Guilemany, and S. Vizcaino, Tribol. Int. 36, 181 (2003).

    Article  Google Scholar 

  11. E. Fernández, M. Cadenas, R. González, C. Navas, R. Fernández, and J. de Damborenea, Wear 259, 870 (2005).

    Article  Google Scholar 

  12. C.P. Paul, A. Jain, P. Ganesh, J. Negi, and A.K. Nath, Opt. Lasers Eng. 44, 1096 (2006).

    Article  Google Scholar 

  13. A. Angelastro, S.L. Campanelli, and A.D. Ludovico, Adv. Mater. Res. 83–86, 842 (2009).

    Article  Google Scholar 

  14. D. Wang, E. Liang, M. Chao, and B. Yuan, Surf. Coat. Technol. 202, 1371 (2008).

    Article  Google Scholar 

  15. S. Zhou, X. Dai, and H. Zheng, Opt. Laser Technol. 43, 613 (2011).

    Article  Google Scholar 

  16. Y. Huang, X. Zeng, Q. Hu, and S. Zhou, Appl. Surf. Sci. 255, 3940 (2009).

    Article  Google Scholar 

  17. T. Yu, Q.-L. Deng, W. Zhang, G. Dong, and J. Yang, J. Shanghai Jiaotong Univ. (Sci.) 46, 1043 (2012).

    Google Scholar 

  18. T. Yu, Q. Deng, G. Dong, and J. Yang, Appl. Surf. Sci. 257, 5098 (2011).

    Article  Google Scholar 

  19. M.-J. Chao and E.-J. Liang, Surf. Coat. Technol. 179, 265 (2004).

    Article  Google Scholar 

  20. I. Hemmati, J.C. Rao, V. Ocelík, and J.Th.M. De Hosson, J. Mater. Sci. 48, 3315 (2013).

    Article  Google Scholar 

  21. E. Toyserkani, Laser Cladding (Boca Raton, FL: CRC Press, 2005).

    Google Scholar 

  22. I. Hemmati, J.C. Rao, V. Ocelík, and J.Th.M. De Hosson, Microsc. Microanal. 19, 120 (2013).

    Article  Google Scholar 

  23. R. Jendrzejewski, I. Kreja, and G. Śliwiński, Mater. Sci. Eng. A 379, 313 (2004).

    Article  Google Scholar 

  24. J.F. Knott, Fundamentals of Fracture Mechanics (London: Butterworths, 1973).

    Google Scholar 

  25. I. Hemmati, V. Ocelík, and J.Th.M. De Hosson, Contact Mechanics and Surface Treatments X, ed. J.Th.M. De Hosson and C.A. Brebbia (Southampton: WIT Press, 2011), pp. 287–296.

    Chapter  Google Scholar 

  26. B.V. Cockeram, Metall. Mater. Trans. A 33, 33 (2002).

    Article  Google Scholar 

  27. D.J. Branagan, M.C. Marshall, and B.E. Meacham, Metall. Mater. Trans. A 428, 116 (2006).

    Google Scholar 

Download references

Acknowledgements

This research was carried out under Project Number MC7.06259 in the framework of the Research Program of the Materials innovation institute M2i (www.m2i.nl). The Wall Colmonoy Ltd. is acknowledged for providing Colmonoy 69 powders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Th. M. De Hosson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemmati, I., Ocelík, V. & De Hosson, J.T.M. Advances in Laser Surface Engineering: Tackling the Cracking Problem in Laser-Deposited Ni-Cr-B-Si-C Alloys. JOM 65, 741–748 (2013). https://doi.org/10.1007/s11837-013-0594-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0594-3

Keywords

Navigation