Skip to main content
Log in

Alloy Design and Properties Optimization of High-Entropy Alloys

  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article reviews the recent work on the high-entropy alloys (HEAs) in our group and others. HEAs usually contain five or more elements, and thus, the phase diagram of HEAs is often not available to be used to design the alloys. We have proposed that the parameters of δ and Ω can be used to predict the phase formation of HEAs, namely Ω ≥ 1.1 and δ ≤ 6.6%, which are required to form solid-solution phases. To test this criterion, alloys of TiZrNbMoV x and CoCrFeNiAlNb x were prepared. Their microstructures mainly consist of simple body-centered cubic solid solutions at low Nb contents. TiZrNbMoV x alloys possess excellent mechanical properties. Bridgman solidification was also used to control the microstructure of the CoCrFeNiAl alloy, and its plasticity was improved to be about 30%. To our surprise, the CoCrFeNiAl HEAs exhibit no apparent ductile-to-brittle transition even when the temperatures are lowered from 298 K to 77 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.W. Qiao, E.W. Huang, F. Jiang, T. Ungar, G. Csiszar, L. Li, Y. Ren, P.K. Liaw, and Y. Zhang, Appl. Phys. Lett. 97, 171910 (2010).

    Article  Google Scholar 

  2. K. Zhao, X.X. Xia, H.Y. Bai, D.Q. Zhao, and W.H. Wang, Appl. Phys. Lett. 98, 141913 (2011).

    Article  Google Scholar 

  3. H.B. Lou, X.D. Wang, F. Xu, S.Q. Ding, Q.P. Cao, K. Hono, and J.Z. Jiang, Appl. Phys. Lett. 99, 051910 (2011).

    Article  Google Scholar 

  4. Y.J. Zhou, Y. Zhang, F.J. Wang, and G.L. Chen, Appl. Phys. Lett. 92, 241917 (2008).

    Article  Google Scholar 

  5. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  6. X.F. Wang, Y. Zhang, Y. Qiao, and G.L. Chen, Intermetallics 15, 357 (2007).

    Article  Google Scholar 

  7. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Appl. Phys. Lett. 90, 181904 (2007).

    Article  Google Scholar 

  8. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Intermetallics 18, 1758 (2010).

    Article  Google Scholar 

  9. M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, and J.W. Yeh, Acta Mater. 59, 6308 (2011).

    Article  Google Scholar 

  10. S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, and J. Banhart, Acta Mater. 59, 182 (2011).

    Article  Google Scholar 

  11. J.W. Yeh, S.J. Lin, T.S. Chin, J.Y. Gan, S.K. Chen, T.T. Shun, C.H. Tsau, and S.Y. Chou, Metall. Mater. Trans. A 35, 2533 (2004).

    Article  Google Scholar 

  12. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Adv. Eng. Mater. 10, 534 (2008).

    Article  Google Scholar 

  13. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Mater. Sci. Eng. A 454–455, 260 (2007).

    Google Scholar 

  14. Y. Zhang, G.L. Chen, and C.L. Gan, J. ASTM Int. 7, 1 (2010).

    Article  Google Scholar 

  15. L.H. Wen, H.C. Kou, J.S. Li, H. Chang, X.Y. Xue, and L. Zhou, Intermetallics 17, 266 (2009).

    Article  Google Scholar 

  16. C.W. Tsai, M.H. Tsai, J.W. Yeh, and C.C. Yang, J. Alloy Compd. 490, 160 (2010).

    Article  Google Scholar 

  17. J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, and Z.Q. Hu, Mater. Sci. Eng. A 527, 6975 (2010).

    Article  Google Scholar 

  18. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Intermetallics 19, 698 (2011).

    Article  Google Scholar 

  19. C.M. Lin and H.L. Tsai, Intermetallics 19, 288 (2011).

    Article  Google Scholar 

  20. H. Zhang, Y. Pan, and Y.Z. He, J. Therm. Spray Technol. 20, 1049 (2011).

    Article  Google Scholar 

  21. X. Yang and Y. Zhang, Mater. Chem. Phys. 132, 233 (2012).

    Article  Google Scholar 

  22. Y. Zhang, Mater. Sci. Forum 654–656, 1058 (2010).

    Article  Google Scholar 

  23. C. Kittel, Introduction to Solid State Physics (New York: Wiley, 1996), p. 78.

    Google Scholar 

  24. S.G. Ma and Y. Zhang, Mater. Sci. Eng. A 532, 480 (2012).

    Article  Google Scholar 

  25. Y. Zhang, S.G. Ma, and J.W. Qiao, Metall. Mater. Trans. A 1 (2011).

  26. J.A. Hanna, I. Baker, M.W. Wittmann, and P.R. Munroe, J. Mater. Res. 20, 791 (2005).

    Article  Google Scholar 

  27. J.W. Qiao, S.G. Ma, E.W. Huang, C.P. Chuang, P.K. Liaw, and Y. Zhang, Mater. Sci. Forum 688, 419 (2011).

    Article  Google Scholar 

  28. J. Rosler, H. Harders, and M. Baker, Mechanical Behavior of Engineering Materials (Berlin, Germany: Springer, 2007), p. 205.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support by the Natural Science Foundation of China (No. 50971019). P.K.L. appreciates the support from the U.S. National Science Foundation (grants DMR-0909037, CMMI-0900271, and CMMI-1100080) and Grant NEUP 119262 from the Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Yang, X. & Liaw, P.K. Alloy Design and Properties Optimization of High-Entropy Alloys. JOM 64, 830–838 (2012). https://doi.org/10.1007/s11837-012-0366-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0366-5

Keywords

Navigation