Skip to main content
Log in

Iron removal and recovery in the titanium dioxide feedstock and pigment industries

  • Sustainable Processing
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Titanium and iron are closely related in nature. Therefore, for both environmental and economic reasons, the fate of iron may be very crucial for the titanium extraction industry. Smelting of ilmenite to produce titania slag allows for the recovery of iron as high purity pig iron. However, in the production of synthetic rutile from ilmenite sands, iron is returned to the mine site as a fine oxide/hydroxide residue. Some projects to recover iron from these residues never reached the industrial scale. In the titanium dioxide (TiO2) pigment industry, iron is deported as sulfate or chloride salt, which is usually neutralized and rejected at a considerable cost. In the past few years, ferrous sulfate heptahydrate (or copperas) and iron chloride have found a few applications, but still the demand for these iron salts is not enough to cover the production volumes. The review of some new processes currently under development clearly shows that iron recovery is essential for the long-term viability of any new ilmenite upgrading or TiO2 pigment production process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mineral Sands Annual Review 2008 (Victoria Park, W. Australia: Minerals International Pty Ltd., 2008).

  2. J. Kischkewitz, W.D. Griebler, and M. de Liedekerke, Industrial Inorganic Pigments, 2nd edition, ed. G. Buxbaum (Weinhelm, Germany: Wlley-VCH, 1998), pp. 43–82.

    Google Scholar 

  3. T. Ikeshima, Titanium Science and Technology, ed. G. Lutjerng, U. Zwicker, and W. Bunk (Oberursal, Germany: DGM-Deutsche Gesellschaft für Materialkunde, 1985), pp. 3–14.

    Google Scholar 

  4. J. Barksdale, Titanium, Its Occurrence, Chemistry, and Technology, 2nd edition (New York: The Roland Press Company, 1966).

    Google Scholar 

  5. Titanium Dioxide Manufacturers Association, Process Bref Titanium Dioxide, Background Document (Brussels: CEFIC European Chemical Industry Council, 2001).

    Google Scholar 

  6. E. Reck and M. Richards, Pigment & Resin Technology, 28(3) (1999), pp. 149–157.

    Article  CAS  Google Scholar 

  7. N. Osterwalder et al., Journal of Nanoparticle Research, 8 (2006), pp. 1–9.

    Article  CAS  Google Scholar 

  8. T.E. Norgate, S. Jahanshahi, and W.J. Rankin, Journal of Cleaner Production, 15(8–9) (2007), pp. 838–848.

    Article  Google Scholar 

  9. M. Guéguin and F. Cardarelli, Mineral Processing & Extractive Metallurgy Review, 28 (2007), pp. 1–57.

    Article  Google Scholar 

  10. T Chernet, Mineralogy and Petrology, 67 (1999), pp. 21–32.

    Article  CAS  ADS  Google Scholar 

  11. L. Fromanek, H. Lomert, and A.N. Beyzavi, Heavy Minerals 1997, ed. R.E. Robinson (Johannesburg, S. Africa: The South African Institute of Mining and Metallurgy, 1997), pp. 161–168.

    Google Scholar 

  12. G.B. Sadykhov and I.A. Karyazin, Russian Metallurgy (Metally), (6) (2007), pp. 447–454.

  13. TP. Battle, D. Nguyen, and J.W. Reeves, The Paul E. Queneau Internationa Symposium: Extractive Metallurgy of Copper, Nickel and Cobalt, vol. 1, ed. R.G. Reddy and R.N. Weizenbach (Warrendale, PA: TMS, 1993), pp. 925–943.

    Google Scholar 

  14. P.C. Pistorius, Scandinavian Journal of Metallurgy, 31 (2002), pp. 120–125.

    Article  CAS  Google Scholar 

  15. P.C. Pistorius, Metallurgical and Materials Transactions B, 34B (2003), pp. 581–588.

    Article  CAS  ADS  Google Scholar 

  16. P.C. Pistorius, Journal of the South African Institute of Mining and Metallurgy, 103 (2003), pp. 509–514.

    CAS  Google Scholar 

  17. P.C. Pistorius, Journal of the South African Institute of Mining and Metallurgy, 104(2004), pp. 417–422.

    CAS  Google Scholar 

  18. K. Borowlec et al., “Method to Upgrade Titania Slag and Resulting Product,” U.S. patent 5,830,420 (3 November 1998).

  19. K. Borowiec et al., “TiO2 Containing Product Including Rutile, Pseudo-brookite and llmenite,” U.S. patent 6,531,110 (11 March 2003).

  20. J.J. Solheim, Proceedings of the Norwegian Conference on llmenite Smelter (Norway: 1988), pp. 177–199.

  21. Z. Yuan et al., Minerals Engineering, 19 (2006), pp. 975–978.

    Article  CAS  Google Scholar 

  22. Bateman Engineering NV, “Construction of Titania Smelter Plant for CYMG in China,” Bateman Globe, (Aug. 2008), p. 2; www.batemanengineering.com/Globe71/Construction_of_Titania_Smelter_Plant_for_CYMG_in_China.html, (accessed on June 25, 2009.)

  23. P.C. Pistorius, Journal of the South African Institute of Mining and Metallurgy, 108 (2008), pp. 35–43.

    CAS  Google Scholar 

  24. G.E. Williams and J.D. Steenkamp, South African Pyrometallurgy 2006, ed. R.T. Jones (Johannesburg, S. Africa: The South African Institute of Mining and Metallurgy, 2006), pp. 181–188.

    Google Scholar 

  25. M. Gous, Journal of the Southern African Institute of Mining and Metallurgy, 106 (2006), pp. 379–384.

    CAS  Google Scholar 

  26. H. Kotzé, D. Besslnger, and J. Beukes, South African Pyrometallurgy 2006, ed. R.T. Jones (Johannesburg, S. Africa: The South African Institute of Mining and Metallurgy, 2006), pp. 203–214.

    Google Scholar 

  27. R.G. Becher et al., Proceedings of the Australasian Institute of Mining and Metallurgy, (214) (1965), pp. 21–43.

  28. B.F. Bracanin, R.J. Clements, and J.M. Davey, Proceedings of the Australasian Institute of Mining and Metallurgy (275) (1980), pp. 33–42.

  29. C. Li and R.R. Merrltt, Australian Journal of Chemistry, 43 (1990), pp. 1–9.

    CAS  Google Scholar 

  30. H. Aral et al., “Treatment of Titaniferous Materials,” PCT World Patent WO/1994/003647 (17 February 1994).

  31. I.W. George, The Sir Maurice Mawby Memorial Volume, 2nd edition, ed. J.T. Woodcock and J.K. Hamilton (Victoria, Australiane Australasian Institute of Mining and Metallurgy, 1993), pp. 1301–1304.

    Google Scholar 

  32. N.R. Strange, in Reference 31, pp. 1308–1311.

    Google Scholar 

  33. S.J. Mackowski and B.J. Reaveley, in Reference 31, pp. 1304–1308.

    Google Scholar 

  34. C.B. Ward, “The Production of Synthetic Rutile and By-product Iron Oxide Pigments from Ilmenite Processing” (Ph.D. Thesis, Murdoch University, Perth, W.Australia, 1990).

    Google Scholar 

  35. N.R. Iammartino, Chemical Engineering, 83(11) (1976), pp. 100–101.

    Google Scholar 

  36. T.S. Mackey, JOM, 46(4) (1994), pp. 59–64.

    MathSciNet  Google Scholar 

  37. E.A. Walpole and J.D. Winter, Chloride 2002, vol. 2, ed. E. Peek and G. W. Van Weert (Montreal, Canada: Canadian Institute of Mining, Metallurgy and Petroleum, 2002), pp. 401–415.

    Google Scholar 

  38. D. Velhurst et al., Chloride 2002, vol. 2, ed. E. Peek and G.W. Van Weert (Montreal, Canada: Canadian Institute of Mining, Metallurgy and Petroleum, 2002), pp. 417–432.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dimitrios Filippou or Guillaume Hudon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippou, D., Hudon, G. Iron removal and recovery in the titanium dioxide feedstock and pigment industries. JOM 61, 36–42 (2009). https://doi.org/10.1007/s11837-009-0150-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-009-0150-3

Keywords

Navigation