Skip to main content

Advertisement

Log in

A Comprehensive Review of Bat Inspired Algorithm: Variants, Applications, and Hybridization

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Bat algorithm (BA) is one of the promising metaheuristic algorithms. It proved its efficiency in dealing with various optimization problems in diverse fields, such as power and energy systems, economic load dispatch problems, engineering design, image processing and medical applications. Thus, this review introduces a comprehensive and exhaustive review of the BA, as well as evaluates its main characteristics by comparing it with other optimization algorithms. The review paper highlights the performance of BA in different applications and the modifications that have been conducted by researchers (i.e., variants of BA). At the end, the conclusions focus on the current work on BA, highlighting its weaknesses, and suggest possible future research directions. The review paper will be helpful for the researchers and practitioners of BA belonging to a wide range of audiences from the domains of optimization, engineering, medical, data mining and clustering. As well, it is wealthy in research on health, environment and public safety. Also, it will aid those who are interested by providing them with potential future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data is available from the authors upon reasonable request.

References

  1. Hatta N, Zain AM, Sallehuddin R, Shayfull Z, Yusoff Y (2019) Recent studies on optimisation method of grey wolf optimiser (gwo): a review (2014–2017). Artif Intell Rev 52(4):2651–2683

    Article  Google Scholar 

  2. Gharehchopogh FS, Shayanfar H, Gholizadeh H (2020) A comprehensive survey on symbiotic organisms search algorithms. Artif Intell Rev 53(3):2265–2312

    Article  Google Scholar 

  3. Abualigah L, Elaziz MA, Sumari P, Khasawneh AM, Alshinwan M, Mirjalili S, Shehab M, Abuaddous HY, Gandomi AH (2022) Black hole algorithm: a comprehensive survey. Appl Intell 1–24

  4. Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609

    Article  MathSciNet  MATH  Google Scholar 

  5. Shehab M, Abualigah L, Al Hamad H, Alabool H, Alshinwan M, Khasawneh AM (2020) Moth-flame optimization algorithm: variants and applications. Neural Comput Appl 32(14):9859–9884

    Article  Google Scholar 

  6. Abualigah L, Abd Elaziz M, Sumari P, Geem ZW, Gandomi AH (2022) Reptile search algorithm (rsa): a nature-inspired meta-heuristic optimizer. Expert Syst Appl 191:116158

    Article  Google Scholar 

  7. Alshinwan M, Abualigah L, Shehab M, Elaziz MA, Khasawneh AM, Alabool H, Hamad HA (2021) Dragonfly algorithm: a comprehensive survey of its results, variants, and applications. Multimed Tools Appl 80(10):14979–15016

    Article  Google Scholar 

  8. Shehab M, Khader AT, Laouchedi M (2017) Modified cuckoo search algorithm for solving global optimization problems. In: International conference of reliable information and communication technology. Springer, pp 561–570

  9. Abdelmadjid C, Mohamed S-A, Boussad B (2013) CFD analysis of the volute geometry effect on the turbulent air flow through the turbocharger compressor. Energy Proc 36:746–755

    Article  Google Scholar 

  10. Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-Qaness MA, Gandomi AH (2021) Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng 157:107250

    Article  Google Scholar 

  11. Kennedy J (2011) Particle swarm optimization. In: Encyclopedia of machine learning. Springer, pp 760–766

  12. Yang X-S, Deb S (2009) Cuckoo search via lévy flights. In: 2009 world congress on nature & biologically inspired computing (NaBIC). IEEE, pp 210–214

  13. Hussein AM, Abdullah R, AbdulRashid N (2019) Flower pollination algorithm with profile technique for multiple sequence alignment. In: 2019 IEEE Jordan international joint conference on electrical engineering and information technology (JEEIT). IEEE, pp 571–576

  14. Hussein AM, Abdullah R, AbdulRashid N, Ali ANB (2017) Protein multiple sequence alignment by basic flower pollination algorithm. In: 2017 8th international conference on information technology (ICIT). IEEE, pp 833–838

  15. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, pp 65–74

  16. Sahu C, Parhi DR, Kumar PB (2018) An approach to optimize the path of humanoids using adaptive ant colony optimization. J Bionic Eng 15(4):623–635

    Article  Google Scholar 

  17. Ezugwu AE, Agushaka JO, Abualigah L, Mirjalili S, Gandomi AH (2022) Prairie dog optimization algorithm. Neural Computing and Applications, 1–49

  18. Blum C, Li X (2008) Swarm intelligence in optimization. In: Swarm intelligence. Springer, pp 43–85

  19. Agushaka JO, Ezugwu AE, Abualigah L (2022) Dwarf mongoose optimization algorithm. Comput Methods Appl Mech Eng 391:114570

    Article  MathSciNet  MATH  Google Scholar 

  20. Oyelade ON, Ezugwu AE-S, Mohamed TI, Abualigah L (2022) Ebola optimization search algorithm: a new nature-inspired metaheuristic optimization algorithm. IEEE Access 10:16150–16177

    Article  Google Scholar 

  21. Mirjalili S, Mirjalili SM, Yang X-S (2014) Binary bat algorithm. Neural Comput Appl 25(3–4):663–681

    Article  Google Scholar 

  22. Feng J, Kuang H, Zhang L (2022) Ebba: an enhanced binary bat algorithm integrated with chaos theory and lévy flight for feature selection. Future Internet 14(6):178

    Article  Google Scholar 

  23. Akila S, Christe SA (2022) A wrapper based binary bat algorithm with greedy crossover for attribute selection. Expert Syst Appl 187:115828

    Article  Google Scholar 

  24. Rani ASS, Rajalaxmi R (2015) Unsupervised feature selection using binary bat algorithm. In: 2nd International conference on electronics and communication systems (ICECS). IEEE, pp 451–456

  25. Enache A-C, Sgarciu V, Petrescu-Niţă A (2015) Intelligent feature selection method rooted in binary bat algorithm for intrusion detection. In: IEEE 10th Jubilee international symposium on applied computational intelligence and informatics (SACI). IEEE, pp 517–521

  26. Enache A-C, Sgârciu V (2015) A feature selection approach implemented with the binary bat algorithm applied for intrusion detection. In: 38th international conference on telecommunications and signal processing (TSP). IEEE, pp 11–15

  27. Enache A-C, Sgârciu V (2015) An improved bat algorithm driven by support vector machines for intrusion detection. In: International joint conference. Springer, pp 41–51

  28. Nakamura RY, Pereira LA, Costa K, Rodrigues D, Papa JP, Yang X-S (2012) Bba: a binary bat algorithm for feature selection. In: 2012 25th SIBGRAPI conference on graphics, patterns and images (SIBGRAPI). IEEE, pp 291–297

  29. Aminian M, Aminian F (2007) A modular fault-diagnostic system for analog electronic circuits using neural networks with wavelet transform as a preprocessor. IEEE Trans Instrum Meas 56(5):1546–1554

    Article  Google Scholar 

  30. Aminian F, Aminian M, Collins H (2002) Analog fault diagnosis of actual circuits using neural networks. IEEE Trans Instrum Meas 51(3):544–550

    Article  Google Scholar 

  31. Yuan L, He Y, Huang J, Sun Y (2010) A new neural-network-based fault diagnosis approach for analog circuits by using kurtosis and entropy as a preprocessor. IEEE Trans Instrum Meas 59(3):586–595

    Article  Google Scholar 

  32. Zhao D, He Y (2016) A novel binary bat algorithm with chaos and doppler effect in echoes for analog fault diagnosis. Analog Integr Circ Sig Process 87(3):437–450

    Article  Google Scholar 

  33. Zhao D, He Y (2015) Chaotic binary bat algorithm for analog test point selection. Analog Integr Circ Sig Process 84(2):201–214

    Article  Google Scholar 

  34. Kang M, Kim J, Kim J-M (2015) Reliable fault diagnosis for incipient low-speed bearings using fault feature analysis based on a binary bat algorithm. Inf Sci 294:423–438

    Article  MathSciNet  Google Scholar 

  35. Rajeswari C, Sathiyabhama B, Devendiran S, Manivannan K (2015) Diagnostics of gear faults using ensemble empirical mode decomposition, hybrid binary bat algorithm and machine learning algorithms. J Vibroeng 17(3):88–90

    Google Scholar 

  36. Dahi ZAEM, Mezioud C, Draa A (2015) Binary bat algorithm: on the efficiency of mapping functions when handling binary problems using continuous-variable-based metaheuristics. In: IFIP international conference on computer science and its applications_x000D_. Springer, pp 3–14

  37. Rizk-Allah RM, Hassanien AE (2018) New binary bat algorithm for solving 0–1 knapsack problem. Complex Intell Syst 4(1):31–53

    Article  Google Scholar 

  38. Djelloul H, Sabba S, Chikhi S (2014) Binary bat algorithm for graph coloring problem. In: Second world conference on complex systems (WCCS). IEEE, pp 481–486

  39. Hassan EA, Hafez AI, Hassanien AE, Fahmy AA (2015) A discrete bat algorithm for the community detection problem. In: International conference on hybrid artificial intelligence systems. Springer, pp 188–199

  40. Saji Y, Riffi ME (2016) A novel discrete bat algorithm for solving the travelling salesman problem. Neural Comput Appl 27(7):1853–1866

    Article  Google Scholar 

  41. Shi XH, Liang YC, Lee HP, Lu C, Wang Q (2007) Particle swarm optimization-based algorithms for tsp and generalized tsp. Inf Process Lett 103(5):169–176

    Article  MathSciNet  MATH  Google Scholar 

  42. Chen S-M, Chien C-Y (2011) Solving the traveling salesman problem based on the genetic simulated annealing ant colony system with particle swarm optimization techniques. Expert Syst Appl 38(12):14439–14450

    Article  Google Scholar 

  43. Ouaarab A, Ahiod B, Yang X-S (2014) Discrete cuckoo search algorithm for the travelling salesman problem. Neural Comput Appl 24(7–8):1659–1669

    Article  Google Scholar 

  44. Osaba E, Yang X-S, Diaz F, Lopez-Garcia P, Carballedo R (2016) An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems. Eng Appl Artif Intell 48:59–71

    Article  Google Scholar 

  45. Riffi ME, Saji Y, Barkatou M (2017) Incorporating a modified uniform crossover and 2-exchange neighborhood mechanism in a discrete bat algorithm to solve the quadratic assignment problem. Egypt Inf J 18(3):221–232

    Google Scholar 

  46. Zhou Y, Li L, Ma M (2016) A complex-valued encoding bat algorithm for solving 0–1 knapsack problem. Neural Process Lett 44(2):407–430

    Article  Google Scholar 

  47. Cai X, Li W, Kang Q, Wang L, Wu Q (2015) Discrete binary adaptive bat algorithm for RNA secondary structure prediction. J Comput Theor Nanosci 12(2):335–339

    Article  Google Scholar 

  48. Shehab M, Khader AT, Al-Betar M (2016) New selection schemes for particle swarm optimization. IEEJ Trans Electron Inf Syst 136(12):1706–1711

    Google Scholar 

  49. Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9(1):133–148

    Article  Google Scholar 

  50. Sabba S, Chikhi S (2014) A discrete binary version of bat algorithm for multidimensional knapsack problem. Int J Bio-Inspir Comput 6(2):140–152

    Article  Google Scholar 

  51. Sur C, Shukla A (2013) Adaptive & discrete real bat algorithms for route search optimization of graph based road network. In: International conference on machine intelligence and research advancement (ICMIRA). IEEE, pp 120–124

  52. Luo Q, Zhou Y, Xie J, Ma M, Li L (2014) Discrete bat algorithm for optimal problem of permutation flow shop scheduling. Sci World J 4:1–10

    Google Scholar 

  53. Saji Y, Riffi ME, Ahiod B (2014) Discrete bat-inspired algorithm for travelling salesman problem. In: 2014 second world conference on complex systems (WCCS). IEEE, pp 28–31

  54. Shukla A (2015) A modified bat algorithm for the quadratic assignment problem. In: 2015 IEEE congress on evolutionary computation (CEC). IEEE, pp 486–490

  55. Al-qaness MA, Ewees AA, Abd Elaziz M (2021) Modified whale optimization algorithm for solving unrelated parallel machine scheduling problems. Soft Comput 25(14):9545–9557

    Article  Google Scholar 

  56. Amon DA (2015) A modified bat algorithm for power loss reduction in electrical distribution system. Indones J Electr Eng Comput Sci 14(1):55–61

    Google Scholar 

  57. Khooban MH, Niknam T (2015) A new intelligent online fuzzy tuning approach for multi-area load frequency control: Self adaptive modified bat algorithm. Int J Electr Power Energy Syst 71:254–261

    Article  Google Scholar 

  58. Yılmaz S, Küçüksille EU (2015) A new modification approach on bat algorithm for solving optimization problems. Appl Soft Comput 28:259–275

    Article  Google Scholar 

  59. Veysi M, Soltanpour MR, Khooban MH (2015) A novel self-adaptive modified bat fuzzy sliding mode control of robot manipulator in presence of uncertainties in task space. Robotica 33(10):2045–2064

    Article  Google Scholar 

  60. Kavousi-Fard A, Niknam T, Fotuhi-Firuzabad M (2016) A novel stochastic framework based on cloud theory and modified bat algorithm to solve the distribution feeder reconfiguration. IEEE Trans Smart Grid 7(2):740–750

    Google Scholar 

  61. Bajaj A, Sangwan OP, Abraham A (2022) Improved novel bat algorithm for test case prioritization and minimization. Soft Comput 1–27

  62. Zhou X, Gao F, Fang X, Lan Z (2021) Improved bat algorithm for UAV path planning in three-dimensional space. IEEE Access 9:20100–20116

    Article  Google Scholar 

  63. Haider Bangyal W, Hameed A, Ahmad J, Nisar K, Haque MR, Ibrahim A, Asri A, Rodrigues JJ, Khan MA, Rawat BD et al (2022) New modified controlled bat algorithm for numerical optimization problem. Comput Mater Continua 70(2):2241–2259

    Article  Google Scholar 

  64. Enache A-C, Sgârciu V (2015) Anomaly intrusions detection based on support vector machines with an improved bat algorithm. In: 20th international conference on control systems and computer science (CSCS). IEEE, pp 317–321

  65. Goyal S, Patterh MS (2016) Modified bat algorithm for localization of wireless sensor network. Wireless Pers Commun 86(2):657–670

    Article  Google Scholar 

  66. Pérez J, Valdez F, Castillo O (2015) Modification of the bat algorithm using fuzzy logic for dynamical parameter adaptation. In: 2015 IEEE congress on evolutionary computation (CEC). IEEE, pp 464–471

  67. Shan X, Liu K, Sun P-L (2016) Modified bat algorithm based on lévy flight and opposition based learning. Sci Program 2016:90–98

    Google Scholar 

  68. Jaddi NS, Abdullah S, Hamdan AR (2015) Optimization of neural network model using modified bat-inspired algorithm. Appl Soft Comput 37:71–86

    Article  Google Scholar 

  69. Dahou A, Al-qaness MA, Abd Elaziz M, Helmi A (2022) Human activity recognition in IOHT applications using arithmetic optimization algorithm and deep learning. Measurement 199:111445

    Article  Google Scholar 

  70. Fister I, Brest J, Yang X-S (2015) Modified bat algorithm with quaternion representation. In: IEEE congress on evolutionary computation (CEC). IEEE, pp 491–498

  71. Perez J, Valdez F, Castillo O, Melin P, Gonzalez C, Martinez G (2017) Interval type-2 fuzzy logic for dynamic parameter adaptation in the bat algorithm. Soft Comput 21(3):667–685

    Article  Google Scholar 

  72. Miodragović GR, Bulatović RR (2015) Loop bat family algorithm (loop bfa) for constrained optimization. J Mech Sci Technol 29(8):3329–3341

    Article  Google Scholar 

  73. Jordehi AR (2015) Chaotic bat swarm optimisation (cbso). Appl Soft Comput 26:523–530

    Article  Google Scholar 

  74. Bansal B, Sahoo A (2015) Full model selection using bat algorithm. In: 2015 international conference on cognitive computing and information processing (CCIP). IEEE, pp 1–4

  75. Yang N-C, Le M-D (2015) Optimal design of passive power filters based on multi-objective bat algorithm and pareto front. Appl Soft Comput 35:257–266

    Article  Google Scholar 

  76. Tuba M, Alihodzic A, Bacanin N (2015) Cuckoo search and bat algorithm applied to training feed-forward neural networks. In: Recent advances in swarm intelligence and evolutionary computation. Springer, pp 139–162

  77. Kavousi-Fard A, Khosravi A (2016) An intelligent \(\theta\)-modified bat algorithm to solve the non-convex economic dispatch problem considering practical constraints. Int J Electr Power Energy Syst 82:189–196

    Article  Google Scholar 

  78. Shambour MKY (2017) Dynamic search zones (dsz) for harmony search algorithm. In: 2017 8th international conference on information technology (ICIT). pp 941–946

  79. Wang G, Guo L, Duan H, Liu L, Wang H (2012) A bat algorithm with mutation for UCAV path planning. Sci World J 12:67–71

    Google Scholar 

  80. Chowdhury A, Rakshit P, Konar A, Nagar AK (2014) A modified bat algorithm to predict protein-protein interaction network. In: IEEE congress on evolutionary computation (CEC). IEEE, pp 1046–1053

  81. Chen Y-T, Liao B-Y, Lee C-F, Tsay W-D, Lai M-C (2013) An adjustable frequency bat algorithm based on flight direction to improve solution accuracy for optimization problems. In: Second international conference on robot, vision and signal processing (RVSP). IEEE, pp 172–177

  82. Chen Y-T, Lee T-F, Horng M-F, Pan J-S, Chu S-C (2013) An echo-aided bat algorithm to support measurable movement for optimization efficiency. In: 2013 IEEE international conference on systems, man, and cybernetics (SMC). IEEE, pp 806–811

  83. Latif A, Palensky P (2014) Economic dispatch using modified bat algorithm. Algorithms 7(3):328–338

    Article  Google Scholar 

  84. Latif A, Ahmad I, Palensky P, Gawlik W (2016) Multi objective reactive power dispatch in distribution networks using modified bat algorithm. In: Green energy and systems conference (IGSEC), 2016 IEEE. IEEE, pp 1–7

  85. Mohammad Abualigah L, Al-diabat M, Al Shinwan M, Dhou K, Alsalibi B, Said Hanandeh E, Shehab M (2020) Hybrid harmony search algorithm to solve the feature selection for data mining applications. Recent advances in hybrid metaheuristics for data clustering, pp 19–37

  86. Gupta R, Chaudhary N, Pal SK (2014) Hybrid model to improve bat algorithm performance. In: International conference on advances in computing, communications and informatics (ICACCI). IEEE, pp 1967–1970

  87. Tuba M, Bacanin N (2015) Hybridized bat algorithm for multi-objective radio frequency identification (rfid) network planning. In: 2015 IEEE congress on evolutionary computation (CEC). IEEE, pp 499–506

  88. Pan J-S, Dao T-K, Kuo M-Y, Horng M-F et al (2014) Hybrid bat algorithm with artificial bee colony. In: Volume II (ed) Intelligent data analysis and its applications. Springer, Berlin, pp 45–55

    Google Scholar 

  89. Yammani C, Maheswarapu S, Kumari MS (2014) Optimal placement and sizing of DERS with load variations using bat algorithm. Arab J Sci Eng 39(6):4891–4899

    Article  Google Scholar 

  90. Sadeghi J, Mousavi SM, Niaki STA, Sadeghi S (2014) Optimizing a bi-objective inventory model of a three-echelon supply chain using a tuned hybrid bat algorithm. Transp Res E 70:274–292

    Article  Google Scholar 

  91. Wang J, Fan X, Zhao A, Yang M (2015) A hybrid bat algorithm for process planning problem. IFAC-PapersOnLine 48(3):1708–1713

    Article  Google Scholar 

  92. Xie J, Zhou Y, Zheng H (2013) A hybrid metaheuristic for multiple runways aircraft landing problem based on bat algorithm. J Appl Math 13:1–8

    Google Scholar 

  93. Liu Y, Yin X, Zhang J, Yu S, Han Z, Ren L (2014) A electro-deposition process for fabrication of biomimetic super-hydrophobic surface and its corrosion resistance on magnesium alloy. Electrochim Acta 125:395–403

    Article  Google Scholar 

  94. Ali AF (2015) Accelerated bat algorithm for solving integer programming problems. Egypt Comput Sci J 39:8

    Google Scholar 

  95. Wang G-G, Lu M, Zhao X-J (2016) An improved bat algorithm with variable neighborhood search for global optimization. In: IEEE congress on evolutionary computation (CEC). IEEE, pp 1773–1778

  96. He X-S, Ding W-J, Yang X-S (2014) Bat algorithm based on simulated annealing and gaussian perturbations. Neural Comput Appl 25(2):459–468

    Article  Google Scholar 

  97. Bezdan T, Zivkovic M, Bacanin N, Strumberger I, Tuba E, Tuba M (2022) Multi-objective task scheduling in cloud computing environment by hybridized bat algorithm. J Intell Fuzzy Syst 42(1):411–423

    Article  Google Scholar 

  98. Agrawal U, Arora J, Singh R, Gupta D, Khanna A, Khamparia A (2020) Hybrid wolf-bat algorithm for optimization of connection weights in multi-layer perceptron. ACM Trans Multimed Comput Commun Appl (TOMM) 16(1s):1–20

    Article  Google Scholar 

  99. Alsalibi B, Abualigah L, Khader AT (2021) A novel bat algorithm with dynamic membrane structure for optimization problems. Appl Intell 51(4):1992–2017

    Article  Google Scholar 

  100. Yue S, Zhang H (2021) A hybrid grasshopper optimization algorithm with bat algorithm for global optimization. Multimed Tools Appl 80(3):3863–3884

    Article  MathSciNet  Google Scholar 

  101. Luo J, He F, Yong J (2020) An efficient and robust bat algorithm with fusion of opposition-based learning and whale optimization algorithm. Intell Data Anal 24(3):581–606

    Article  Google Scholar 

  102. Chen M-R, Huang Y-Y, Zeng G-Q, Lu K-D, Yang L-Q (2021) An improved bat algorithm hybridized with extremal optimization and Boltzmann selection. Expert Syst Appl 175:114812

    Article  Google Scholar 

  103. Podili P, Pattanaik K, Rana PS (2017) Bat and hybrid bat meta-heuristic for quality of service-based web service selection. J Intell Syst 26(1):123–137

    Google Scholar 

  104. Shambour MKY, Abusnaina AA, Alsalibi AI (2018) Modified global flower pollination algorithm and its application for optimization problems. Computational Life Sciences, Interdisciplinary Sciences, pp 1–12

    Google Scholar 

  105. Gandomi AH, Yang X-S, Alavi AH, Talatahari S (2013) Bat algorithm for constrained optimization tasks. Neural Comput Appl 22(6):1239–1255

    Article  Google Scholar 

  106. Goel S, Goel N, Gupta D (2014) Unconstrained optimisation through bat algorithm. Int J Intell Eng Inf 2(4):259–270

    Google Scholar 

  107. Ghanem WA, Jantan A (2017) An enhanced bat algorithm with mutation operator for numerical optimization problems. Neural Comput Appli 1–35

  108. Jamil M, Yang X-S (2013) A literature survey of benchmark functions for global optimisation problems. Int J Math Modell Numer Optim 4(2):150–194

    MATH  Google Scholar 

  109. Chen Z, Zhou Y, Lu M (2013) A simplified adaptive bat algorithm based on frequency

  110. Yilmaz S, Kucuksille EU (2013) Improved bat algorithm (IBA) on continuous optimization problems. Lecture Notes Softw Eng 1(3):279

    Article  Google Scholar 

  111. Gandomi AH, Yang X-S (2014) Chaotic bat algorithm. J Comput Sci 5(2):224–232

    Article  MathSciNet  Google Scholar 

  112. Xue F, Cai Y, Cao Y, Cui Z, Li F (2015) Optimal parameter settings for bat algorithm. Int J Bio-Inspir Comput 7(2):125–128

    Article  Google Scholar 

  113. Wang G-G, Chang B, Zhang Z (2015) A multi-swarm bat algorithm for global optimization. In: IEEE congress on evolutionary computation (CEC). IEEE, pp 480–485

  114. Afrabandpey H, Ghaffari M, Mirzaei A, Safayani M (2014) A novel bat algorithm based on chaos for optimization tasks. In: 2014 Iranian conference on intelligent systems (ICIS). IEEE, pp 1–6

  115. Meng X-B, Gao X, Liu Y, Zhang H (2015) A novel bat algorithm with habitat selection and doppler effect in echoes for optimization. Expert Syst Appl 42(17–18):6350–6364

    Article  Google Scholar 

  116. Pérez J, Valdez F, Castillo O (2015) A new bat algorithm augmentation using fuzzy logic for dynamical parameter adaptation. In: Mexican international conference on artificial intelligence. Springer, pp 433–442

  117. Zhu B, Zhu W, Liu Z, Duan Q, Cao L (2016) A novel quantum-behaved bat algorithm with mean best position directed for numerical optimization. Comput Intell Neurosci 16:11–24

    Google Scholar 

  118. Li L, Zhou Y (2014) A novel complex valued bat algorithm. Neural Comput Appl 25(6):1369–1381

    Article  Google Scholar 

  119. Shambour MKY (2018) Vibrant search mechanism for numerical optimization functions. J Inf Commun Technol 17(4):679–702

    Google Scholar 

  120. Cai X, Geng S, Wu D, Wang L, Wu Q (2020) A unified heuristic bat algorithm to optimize the leach protocol. Concurr Comput 32(9):e5619

    Article  Google Scholar 

  121. Khan K, Nikov A, Sahai A (2011) A fuzzy bat clustering method for ergonomic screening of office workplaces. In: Third international conference on software, services and semantic technologies S3T 2011. Springer, pp 59–66

  122. Tuba E, Tuba M, Simian D (2016) Adjusted bat algorithm for tuning of support vector machine parameters. In: IEEE congress on evolutionary computation (CEC). IEEE, pp 2225–2232

  123. Heraguemi KE, Kamel N, Drias H (2015) Association rule mining based on bat algorithm. J Comput Theor Nanosci 12(7):1195–1200

    Article  Google Scholar 

  124. Alotaibi Y (2022) A new meta-heuristics data clustering algorithm based on tabu search and adaptive search memory. Symmetry 14(3):623

    Article  Google Scholar 

  125. Ye Z, Ma L, Wang M, Chen H, Zhao W (2015) Texture image classification based on support vector machine and bat algorithm. In: IEEE 8th international conference on intelligent data acquisition and advanced computing systems: technology and applications (IDAACS), vol. 1. IEEE, pp 309–314

  126. Jensi R, Jiji GW (2015) Mba-lf: a new data clustering method using modified bat algorithm and levy flight. ICTACT J Soft Comput 6(1):1–10

    Google Scholar 

  127. Heraguemi KE, Kamel N, Drias H (2016) Multi-swarm bat algorithm for association rule mining using multiple cooperative strategies. Appl Intell 45(4):1021–1033

    Article  Google Scholar 

  128. Heraguemi KE, Kamel N, Drias H (2015) Multi-population cooperative bat algorithm for association rule mining. In: Computational collective intelligence. Springer, pp 265–274

  129. Khennak I, Drias H (2016) Bat algorithm for efficient query expansion: application to medline. In: New advances in information systems and technologies. Springer, pp 113–122

  130. Binu D, Selvi M (2015) Bfc: bat algorithm based fuzzy classifier for medical data classification. J Med Imaging Health Inf 5(3):599–606

    Article  Google Scholar 

  131. Song A, Ding X, Chen J, Li M, Cao W, Pu K (2016) Multi-objective association rule mining with binary bat algorithm. Intell Data Anal 20(1):105–128

    Article  Google Scholar 

  132. Liu J, Diamond J (2005) China’s environment in a globalizing world. Nature 435(7046):1179

    Article  Google Scholar 

  133. Tharwat A, Zawbaa HM, Gaber T, Hassanien AE, Snasel V (2015) Automated zebrafish-based toxicity test using bat optimization and adaboost classifier. In: 11th international computer engineering conference (ICENCO). IEEE, pp 169–174

  134. Abd Elaziz M, Ewees AA, Al-qaness MA, Abualigah L, Ibrahim RA (2022) Sine-cosine-barnacles algorithm optimizer with disruption operator for global optimization and automatic data clustering. Expert Syst Appl 207:117993

    Article  Google Scholar 

  135. Kotteeswaran R, Sivakumar L (2013) A novel bat algorithm based re-tuning of pi controller of coal gasifier for optimum response. In: Mining intelligence and knowledge exploration. Springer, pp 506–517

  136. Kouba NEY, Menaa M, Hasni M, Boudour M (2015) A novel robust automatic generation control in interconnected multi area power system based on bat inspired algorithm. In: 3rd international conference on control, engineering & information technology (CEIT). IEEE, pp 1–6

  137. Sambariya D, Prasad R (2016) Application of bat algorithm to optimize scaling factors of fuzzy logic-based power system stabilizer for multimachine power system. Int J Nonlinear Sci Numer Simul 17(1):41–53

    Article  MATH  Google Scholar 

  138. Sambariya DK, Prasad R (2016) Design of optimal proportional integral derivative based power system stabilizer using bat algorithm. Appl Comput Intell Soft Comput 2016:5

    Google Scholar 

  139. Abatari HD, Abad MSS, Seifi H (2016) Application of bat optimization algorithm in optimal power flow. In: 2016 24th Iranian Conference on Electrical Engineering (ICEE). IEEE, pp 793–798

  140. Dash P, Saikia LC, Sinha N (2015) Automatic generation control of multi area thermal system using bat algorithm optimized PD-PID cascade controller. Int J Electr Power Energy Syst 68:364–372

    Article  Google Scholar 

  141. Trivedi IN, Bhoye M, Jangir P, Parmar SA, Jangir N, Kumar A (2016) Voltage stability enhancement and voltage deviation minimization using bat optimization algorithm. In: 2016 3rd international conference on electrical energy systems (ICEES). IEEE, pp 112–116

  142. Malibari AA, Alotaibi SS, Alshahrani R, Dhahbi S, Alabdan R, Al-wesabi FN, Hilal AM (2022) A novel metaheuristics with deep learning enabled intrusion detection system for secured smart environment. Sustain Energy Technol Assess 52:102312

    Google Scholar 

  143. Sambariya D, Paliwal D (2016) Design of PIDA controller using bat algorithm for AVR power system. Adv Energy Power 4(1):1–6

    Article  Google Scholar 

  144. Chaib L, Choucha A, Arif S (2017) Optimal design and tuning of novel fractional order PID power system stabilizer using a new metaheuristic bat algorithm. Ain Shams Eng J 8(2):113–125

    Article  Google Scholar 

  145. Abdelghani C, Lakhdar C, Salem A, Djameleddine BM, Lakhdar M (2015) Robust design of fractional order PID sliding mode based power system stabilizer in a power system via a new metaheuristic bat algorithm. In: 2015 international workshop on recent advances in sliding modes (RASM). IEEE, pp 1–5

  146. Neagu BC, Ivanov O, Georgescu G (2016) Reactive power compensation in distribution networks using the bat algorithm. In: 2016 international conference and exposition on electrical and power engineering (EPE). IEEE, pp 711–714

  147. Rao BV, Kumar GN (2015) Optimal power flow by bat search algorithm for generation reallocation with unified power flow controller. Int J Electr Power Energy Syst 68:81–88

    Article  Google Scholar 

  148. Yuvaraj T, Ravi K, Devabalaji K (2015) Dstatcom allocation in distribution networks considering load variations using bat algorithm. Ain Shams Eng J 10

  149. Al-Wesabi FN, Obayya M, Hamza MA, Alzahrani JS, Gupta D, Kumar S (2022) Energy aware resource optimization using unified metaheuristic optimization algorithm allocation for cloud computing environment. Sustain Comput 35:100686

    Google Scholar 

  150. Yuniahastuti IT Anshori I, Robandi I (2016) Load frequency control (lfc) of micro-hydro power plant with capacitive energy storage (ces) using bat algorithm (ba). In: International seminar on application for technology of information and communication (ISemantic). IEEE, pp 147–151

  151. Sathya M, Ansari MMT (2015) Load frequency control using bat inspired algorithm based dual mode gain scheduling of pi controllers for interconnected power system. Int J Electr Power Energy Syst 64:365–374

    Article  Google Scholar 

  152. Abd-Elazim S, Ali E (2016) Load frequency controller design via bat algorithm for nonlinear interconnected power system. Int J Electr Power Energy Syst 77:166–177

    Article  Google Scholar 

  153. Ganesan K, Barathi K, Chandrasekar P, Balaji D (2015) Selective harmonic elimination of cascaded multilevel inverter using bat algorithm. Proc Technol 21:651–657

    Article  Google Scholar 

  154. Premkumar K, Manikandan B (2015) Speed control of brushless DC motor using bat algorithm optimized adaptive neuro-fuzzy inference system. Appl Soft Comput 32:403–419

    Article  Google Scholar 

  155. Sudabattula SK, Kowsalya M (2016) Optimal allocation of solar based distributed generators in distribution system using bat algorithm. Perspect Sci 8:270–272

    Article  Google Scholar 

  156. Yammani C, Maheswarapu S, Matam SK (2013) Optimal placement and sizing of DERS with load models using bat algorithm. In: International conference on circuits, power and computing technologies (ICCPCT). IEEE, pp 394–399

  157. Yammani C, Maheswarapu S, Matam SK (2016) Optimal placement and sizing of distributed generations using shuffled bat algorithm with future load enhancement. Int Trans Electr Energy Syst 26(2):274–292

    Article  Google Scholar 

  158. Yammani C, Maheswarapu S, Matam SK (2016) A multi-objective shuffled bat algorithm for optimal placement and sizing of multi distributed generations with different load models. Int J Electr Power Energy Syst 79:120–131

    Article  Google Scholar 

  159. Behera SR, Dash SP, Panigrahi B (2015) Optimal placement and sizing of dgs in radial distribution system (rds) using bat algorithm. In: International conference on circuit, power and computing technologies (ICCPCT). IEEE, pp 1–8

  160. Oshaba A, Ali E, Elazim SA (2017) Pi controller design for MPPT of photovoltaic system supplying SRM via bat search algorithm. Neural Comput Appl 28(4):651–667

    Article  Google Scholar 

  161. dos Santos Coelho L, Askarzadeh A (2016) An enhanced bat algorithm approach for reducing electrical power consumption of air conditioning systems based on differential operator. Appl Therm Eng 99:834–840

    Article  Google Scholar 

  162. Elsisi M, Soliman M, Aboelela M, Mansour W (2016) Bat inspired algorithm based optimal design of model predictive load frequency control. Int J Electr Power Energy Syst 83:426–433

    Article  Google Scholar 

  163. Ramirez-Gonzalez M, Castellanos-Bustamante R, Calderon-Guizar JG, Malik OP (2016) Coordinated design of fuzzy supplementary controllers for generator and statcom voltage regulators using bat algorithm optimization. Int Trans Electr Energy Syst 26(9):1847–1862

    Article  Google Scholar 

  164. Rahimi A, Bavafa F, Aghababaei S, Khooban MH, Naghavi SV (2016) The online parameter identification of chaotic behaviour in permanent magnet synchronous motor by self-adaptive learning bat-inspired algorithm. Int J Electr Power Energy Syst 78:285–291

    Article  Google Scholar 

  165. Murali M, Kumari MS, Sydulu M (2014) Optimal spot pricing in electricity market with inelastic load using constrained bat algorithm. Int J Electr Power Energy Syst 62:897–911

    Article  Google Scholar 

  166. Oshaba A, Ali E, Elazim SA (2015) Mppt control design of pv system supplied srm using bat search algorithm. Sustain Energy Grids Netw 2:51–60

    Article  Google Scholar 

  167. Gu Y, Budati C (2020) Energy-aware workflow scheduling and optimization in clouds using bat algorithm. Futur Gener Comput Syst 113:106–112

    Article  Google Scholar 

  168. Nguyen TT, Ho SD (2015) Bat algorithm for economic emission load dispatch problem. Int J Adv Sci Technol 86:51–60

    Article  Google Scholar 

  169. Gherbi YA, Bouzeboudja H, Lakdja F (2014) Economic dispatch problem using bat algorithm. Leonardo J Sci 24:75–84

    Google Scholar 

  170. Jose JT (2014) Economic load dispatch including wind power using bat algorithm. In: 2014 international conference on advances in electrical engineering (ICAEE). IEEE, pp 1–4

  171. Biswal S, Barisal A, Behera A, Prakash T (2013) Optimal power dispatch using bat algorithm. In: 2013 international conference on energy efficient technologies for sustainability (ICEETS). IEEE, pp 1018–1023

  172. Niknam T, Azizipanah-Abarghooee R, Zare M, Firouzi BB (2013) Reserve constrained dynamic environmental/economic dispatch: a new multiobjective self-adaptive learning bat algorithm. IEEE Syst J 7(4):763–776

    Article  Google Scholar 

  173. Khader AT, Abusnaina AA, Shambour Q, et al (2014) Modified tournament harmony search for unconstrained optimisation problems. In: Recent advances on soft computing and data mining. Springer, pp 283–292

  174. Adarsh B, Raghunathan T, Jayabarathi T, Yang X-S (2016) Economic dispatch using chaotic bat algorithm. Energy 96:666–675

    Article  Google Scholar 

  175. Apornak A, Raissi S, Keramati A, Khalili-Damghani K (2021) Optimizing human resource cost of an emergency hospital using multi-objective bat algorithm. Int J Healthc Manag 14(3):873–879

    Article  Google Scholar 

  176. Naderi M, Khamehchi E (2017) Well placement optimization using metaheuristic bat algorithm. J Petrol Sci Eng 150:348–354

    Article  Google Scholar 

  177. Khatir S, Belaidi I, Serra R, Wahab MA, Khatir T (2016) Numerical study for single and multiple damage detection and localization in beam-like structures using bat algorithm. J Vibroeng 18(1):424–432

    Google Scholar 

  178. Al-qaness MA, Ewees AA, Fan H, Abualigah L, Abd Elaziz M (2022) Boosted ANFIS model using augmented marine predator algorithm with mutation operators for wind power forecasting. Appl Energy 314:118851

    Article  Google Scholar 

  179. Iglesias A, Gálvez A, Collantes M (2015) A bat algorithm for polynomial bezier surface parameterization from clouds of irregularly sampled data points. In: 11th international conference on natural computation (ICNC). IEEE, pp 1034–1039

  180. Li YG, Peng JP (2014) An improved bat algorithm and its application in multiple UCAVS. In: Applied mechanics and materials, vol. 442, Trans Tech Publ, pp 282–286

  181. Parika W, Seesuaysom W, Vitayasak S, Pongcharoen P (2013) Bat algorithm for designing cell formation with a consideration of routing flexibility. In: 2013 IEEE international conference on industrial engineering and engineering management (IEEM). IEEE, pp 1353–1357

  182. Bekdas G, Nigdeli SM (2016) Bat algorithm for optimization of reinforced concrete columns. PAMM 16(1):681–682

    Article  Google Scholar 

  183. Hasançebi O, Carbas S (2014) Bat inspired algorithm for discrete size optimization of steel frames. Adv Eng Softw 67:173–185

    Article  Google Scholar 

  184. Kumar LR, Padmanaban K, Kumar SG, Balamurugan C (2016) Design and optimization of concurrent tolerance in mechanical assemblies using bat algorithm. J Mech Sci Technol 30(6):2601–2614

    Article  Google Scholar 

  185. Mallick R, Ganguli R, Kumar R (2017) Optimal design of a smart post-buckled beam actuator using bat algorithm: simulations and experiments. Smart Mater Struct 26(5):14

    Article  Google Scholar 

  186. Al-Muraeb A, Abdel-Aty-Zohdy H (2016) Optimal design of short fiber Bragg grating using bat algorithm with adaptive position update. IEEE Photonics J 8(1):1–11

    Article  Google Scholar 

  187. Wang G-G, Chu HE, Mirjalili S (2016) Three-dimensional path planning for UCAV using an improved bat algorithm. Aerosp Sci Technol 49:231–238

    Article  Google Scholar 

  188. Sambariya D, Manohar H (2015) Model order reduction by integral squared error minimization using bat algorithm. In: 2015 2nd International Conference on recent advances in engineering & computational sciences (RAECS). IEEE, pp 1–7

  189. Al-qaness MA, Ewees AA, Fan H, AlRassas AM, Abd Elaziz M (2022) Modified aquila optimizer for forecasting oil production. Geo-spatial Inf Sci 9:1194

    Google Scholar 

  190. Bencharef S, Boubertakh H (2016) Optimal tuning of a PD control by bat algorithm to stabilize a quadrotor. In: 2016 8th international conference on modelling, identification and control (ICMIC). IEEE, pp 938–942

  191. Singh K, Vasant P, Elamvazuthi I, Kannan R (2015) Pid tuning of servo motor using bat algorithm. Proc Comput Sci 60:1798–1808

    Article  Google Scholar 

  192. Premkumar K, Manikandan B (2016) Bat algorithm optimized fuzzy PD based speed controller for brushless direct current motor. Eng Sci Technol Int J 19(2):818–840

    Google Scholar 

  193. Prakash S, Trivedi V, Ramteke M (2016) An elitist non-dominated sorting bat algorithm NSBAT-II for multi-objective optimization of phthalic anhydride reactor. Int J Syst Assur Eng Manag 7(3):299–315

    Article  Google Scholar 

  194. Moraveji MK, Naderi M (2016) Drilling rate of penetration prediction and optimization using response surface methodology and bat algorithm. J Nat Gas Sci Eng 31:829–841

    Article  Google Scholar 

  195. Gholizadeh S, Shahrezaei AM (2015) Optimal placement of steel plate shear walls for steel frames by bat algorithm. Struct Design Tall Spec Build 24(1):1–18

    Article  Google Scholar 

  196. Akhtar S, Ahmad A, Abdel-Rahman E (2012) A metaheuristic bat-inspired algorithm for full body human pose estimation. In: Ninth conference on computer and robot vision (CRV). IEEE, pp 369–375

  197. Gao M-L, Shen J, Yin L-J, Liu W, Zou G-F, Li H-T, Fu G-X (2016) A novel visual tracking method using bat algorithm. Neurocomputing 177:612–619

    Article  Google Scholar 

  198. Senthilnath J, Kulkarni S, Benediktsson JA, Yang X-S (2016) A novel approach for multispectral satellite image classification based on the bat algorithm. IEEE Geosci Remote Sens Lett 13(4):599–603

    Article  Google Scholar 

  199. Satapathy SC, Raja NSM, Rajinikanth V, Ashour AS, Dey N (2016) Multi-level image thresholding using Otsu and chaotic bat algorithm. Neural Comput Appl 1–23

  200. Alihodzic A, Tuba M (2014) Improved bat algorithm applied to multilevel image thresholding. Sci World J 2014:18–30

    Article  Google Scholar 

  201. Ye Z-W, Wang M-W, Liu W, Chen S-B (2015) Fuzzy entropy based optimal thresholding using bat algorithm. Appl Soft Comput 31:381–395

    Article  Google Scholar 

  202. Karri C, Jena U (2016) Fast vector quantization using a bat algorithm for image compression. Eng Sci Technol Int J 19(2):769–781

    Google Scholar 

  203. Dhal KG, Quraishi MI, Das S (2015) Performance analysis of chaotic lévy bat algorithm and chaotic cuckoo search algorithm for gray level image enhancement. In: Information systems design and intelligent applications. Springer, pp 233–244

  204. Bouaziz A, Draa A, Chikhi S (2015) Bat algorithm for fingerprint image enhancement. In: 2015 12th international symposium on programming and systems (ISPS). IEEE, pp 502–512

  205. Tuba M, Jordanski M, Arsic A (2017) Improved weighted thresholded histogram equalization algorithm for digital image contrast enhancement using the bat algorithm. In: Bio-inspired computation and applications in image processing. Elsevier, pp 61–86

  206. Pourhadi A, Mahdavi-Nasab H (2020) A robust digital image watermarking scheme based on bat algorithm optimization and surf detector in SWT domain. Multimed Tools Appl 79(29):21653–21677

    Article  Google Scholar 

  207. Abu-Hashem MA, et al (2009) Enhancing n-gram-hirschberg algorithm by using hash function. In: Modelling & Simulation, 2009. Third Asia International Conference on AMS09. IEEE, pp 282–286

  208. Abu-Hashem MA, Abdullah R, Abdulrazzaq AA, Hasan AA, et al (2012) The use of hash table for building the distance matrix in a pair-wise sequence alignment. In: International conference on software technology and engineering (ICSTE 2012). ASME Press, pp 102–113

  209. Abu-Hashem MA, Rashid NA, Abdullah R, Abdulrazzaq AA, Hasan AA (2016) Filtered distance matrix for constructing high-throughput multiple sequence alignment on protein data. J Theor Appl Inf Technol 86(3):184–196

    Google Scholar 

  210. Abu-Hashem MA, Rashid NA, Abdullah R, Hasan AA, Abdulrazzaq AA (2015) Investigation study: an intensive analysis for MSA leading methods. J Theor Appl Inf Technol 75(1):1–10

    Google Scholar 

  211. Abu-Hashem MA, Uliyan DM, Abuarqoub A (2017) A shared memory method for enhancing the HTNGH algorithm performance: proposed method. In: Proceedings of the international conference on future networks and distributed systems. ACM, p 9

  212. Abu-Hashem MA, Abdullah R, Bahamish HA, et al (2010) Parallel hashing-n-gram-hirschberg algorithm. In: 2nd international conference on computer technology and development (ICCTD). IEEE, pp 37–41

  213. Abu-Hashem MA, Rashid NurAini Abdul RA, Bahamish HA (2010) 3d protein structure comparison and retrieval methods: investigation study. IJCSIS 8(8):8–16

    Google Scholar 

  214. Bahamish HAA, Abdullah R, Abu-Hashem MA (2010) A modified marriage in honey bee optimisation (mbo) algorithm for protein structure prediction. In: 2nd international conference on computer technology and development (ICCTD). IEEE, pp 65–69

  215. Lu S, Qiu X, Shi J, Li N, Lu Z-H, Chen P, Yang M-M, Liu F-Y, Jia W-J, Zhang Y (2017) A pathological brain detection system based on extreme learning machine optimized by bat algorithm. CNS Neurol Disorders-Drug Targets 16(1):23–29

    Article  Google Scholar 

  216. Mandal S, Saha G, Pal RK (2015) Recurrent neural network based modeling of gene regulatory network using bat algorithm. arXiv:1509.03221

  217. Lu S, Wang S-H, Zhang Y-D (2021) Detection of abnormal brain in MRI via improved alexnet and elm optimized by chaotic bat algorithm. Neural Comput Appl 33(17):10799–10811

    Article  Google Scholar 

  218. Rauf HT, Gao J, Almadhor A, Arif M, Nafis MT (2021) Enhanced bat algorithm for covid-19 short-term forecasting using optimized lstm. Soft Comput 25(20):12989–12999

    Article  Google Scholar 

  219. Kishore P, Kishore S, Kumar EK, Kumar K, Aparna P (2015) Medical image watermarking with dwt-bat algorithm. In: International conference on signal processing and communication engineering systems (SPACES). IEEE, pp 270–275

  220. Kora P, Kalva SR (2015) Improved bat algorithm for the detection of myocardial infarction. Springerplus 4(1):666

    Article  Google Scholar 

  221. Singh M, Verma A, Sharma N (2017) Bat optimization based neuron model of stochastic resonance for the enhancement of mr images. Biocybern Biomed Eng 37(1):124–134

    Article  Google Scholar 

  222. Kora P, Krishna KSR (2016) ECG based heart arrhythmia detection using wavelet coherence and bat algorithm. Sensing Imaging 17(1):12

    Article  Google Scholar 

  223. Li G, Xu H, Lin Y (2018) Application of bat algorithm based time optimal control in multi-robots formation reconfiguration. J Bionic Eng 15(1):126–138

    Article  Google Scholar 

  224. Guo J, Gao Y, Cui G (2015) The path planning for mobile robot based on bat algorithm. Int J Autom Control 9(1):50–60

    Article  Google Scholar 

  225. Rahmani M, Ghanbari A, Ettefagh MM (2018) A novel adaptive neural network integral sliding-mode control of a biped robot using bat algorithm. J Vib Control 24(10):2045–2060

    Article  MathSciNet  Google Scholar 

  226. Huang H-C (2016) Fusion of modified bat algorithm soft computing and dynamic model hard computing to online self-adaptive fuzzy control of autonomous mobile robots. IEEE Trans Ind Inf 12(3):972–979

    Article  Google Scholar 

  227. Rahmani M, Ghanbari A, Ettefagh MM (2016) Robust adaptive control of a bio-inspired robot manipulator using bat algorithm. Expert Syst Appl 56:164–176

    Article  Google Scholar 

  228. He L, Xiong C, Liu K, Huang J, He C, Chen W (2018) Mechatronic design of a synergetic upper limb exoskeletal robot and wrench-based assistive control. J Bionic Eng 15(2):247–259

    Article  Google Scholar 

  229. Seelam K, Sailaja M, Madhu T (2015) An improved bat-optimized cluster-based routing for wireless sensor networks. In: Intelligent computing and applications. Springer, pp 115–126

  230. Goyal S, Patterh MS (2013) Wireless sensor network localization based on bat algorithm 5:507–512

  231. Goyal S, Patterh MS (2013) Performance of bat algorithm on localization of wireless sensor network. Int J Comput Technol 6(3):351–358

    Article  Google Scholar 

  232. Kaur SP, Sharma M (2015) Radially optimized zone-divided energy-aware wireless sensor networks (WSN) protocol using BA (bat algorithm). J Res 61(2):170–179

    Google Scholar 

  233. Sharawi M, Emary E, Saroit IA, El-Mahdy H (2015) Wsns energy-aware coverage preserving optimization model based on multi-objective bat algorithm. In: 2015 IEEE congress on evolutionary computation (CEC). IEEE, pp 472–479

  234. Cai X, Wang L, Kang Q, Wu Q (2015) Adaptive bat algorithm for coverage of wireless sensor network. Int J Wireless Mobile Comput 8(3):271–276

    Article  Google Scholar 

  235. Ngo T-G, Dao T-K (2015) Unequal clustering formation based on bat algorithm for wireless sensor networks. Knowledge and systems engineering, 667

  236. Kumar M, Sahoo AB, Sao R, Mangaraj B (2015) Optimization of rectangular patch antenna at 5ghz using bat search algorithm. In: Fifth international conference on communication systems and network technologies (CSNT). IEEE, pp 68–72

  237. Kumari UR, Rao PM, Raju G (2016) Generation of optimized beams from concentric circular antenna array with dipole elements using bat algorithm. In: Microelectronics, electromagnetics and telecommunications. Springer, pp 547–557

  238. Singh Grewal N, Rattan M, Singh Patterh M (2017) A linear antenna array failure correction using improved bat algorithm. Int J RF Microwave Comput Aided Eng 27(7):119

    Article  Google Scholar 

  239. Das A, Mandal D, Ghoshal S, Kar R (2017) An efficient side lobe reduction technique considering mutual coupling effect in linear array antenna using bat algorithm. Swarm Evol Comput 35:26–40

    Article  Google Scholar 

  240. Mohar SS, Goyal S, Kaur R (2021) Optimized sensor nodes deployment in wireless sensor network using bat algorithm. Wirel Pers Commun 116(4):2835–2853

    Article  Google Scholar 

  241. Abed-alguni BH (2017) Bat q-learning algorithm. JJCIT 3(1):56–77

    Google Scholar 

  242. Svečko R, Kusić D (2015) Feedforward neural network position control of a piezoelectric actuator based on a bat search algorithm. Expert Syst Appl 42(13):5416–5423

    Article  Google Scholar 

  243. Dong J, Wu L, Liu X, Li Z, Gao Y, Zhang Y, Yang Q (2020) Estimation of daily dew point temperature by using bat algorithm optimization based extreme learning machine. Appl Therm Eng 165:114569

    Article  Google Scholar 

  244. Shehab M, Abualigah L, Shambour Q, Abu-Hashem MA, Shambour MKY, Alsalibi AI, Gandomi AH (2022) Machine learning in medical applications: a review of state-of-the-art methods. Comput Biol Med 145:105458

    Article  Google Scholar 

  245. Ahmadi A, Nikravesh S (2016) A novel instantaneous exploitation based bat algorithm. In: 2016 24th Iranian conference on electrical engineering (ICEE). IEEE, pp 1751–1756

  246. Suárez P, Iglesias A, Gálvez A (2019) Make robots be bats: specializing robotic swarms to the bat algorithm. Swarm Evol Comput 44:113–129

    Article  Google Scholar 

  247. Keerthi SAK, Vijaykumar M (2015) A survey on swarm intelligence techniques. Int J Comput Appl 115:22

    Google Scholar 

  248. Shehab M, Khader AT, Laouchedi M, Alomari OA (2018) Hybridizing cuckoo search algorithm with bat algorithm for global numerical optimization. J Supercomput 1–28

  249. Holland J (1975) Adaptation in natural and artificial systems: an introductory analysis with application to biology. Control Artif Intell 3:1–15

    Google Scholar 

  250. Kennedy J (2010) Particle swarm optimization. Encycl Mach Learn 12:760–766

    Google Scholar 

  251. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Article  Google Scholar 

  252. Glover F (1977) Heuristics for integer programming using surrogate constraints. Decis Sci 8(1):156–166

    Article  Google Scholar 

  253. Yu J, Kim C-H, Rhee S-B (2020) The comparison of lately proposed Harris hawks optimization and jaya optimization in solving directional overcurrent relays coordination problem. Complexity

  254. Shehab M, Khader AT, Al-Betar MA (2017) A survey on applications and variants of the cuckoo search algorithm. Appl Soft Comput 61:1041–1059

    Article  Google Scholar 

  255. Shambour MKY, Khan EA (2022) A late acceptance hyper-heuristic approach for the optimization problem of distributing pilgrims over mina tents. JUCS 28(4):396–413. https://doi.org/10.3897/jucs.72900

    Article  Google Scholar 

  256. Abualigah L, Alfar HE, Shehab M, Hussein AMA (2020) Sentiment analysis in healthcare: a brief review. Recent advances in NLP: the case of Arabic language, pp 129–141

  257. Ceylan H, Ceylan H (2009) Harmony search algorithm for transport energy demand modeling. In: Music-inspired harmony search algorithm. Springer, pp 163–172

  258. Zhang H, Sun G (2002) Feature selection using tabu search method. Pattern Recogn 35(3):701–711

    Article  MATH  Google Scholar 

  259. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872

    Article  Google Scholar 

  260. Salgotra R, Singh U, Saha S (2018) New cuckoo search algorithms with enhanced exploration and exploitation properties. Expert Syst Appl 95:384–420

    Article  Google Scholar 

  261. Shehab M, Alshawabkah H, Abualigah L, AL-Madi N (2021) Enhanced a hybrid moth-flame optimization algorithm using new selection schemes. Eng Comput 37(4):2931–2956

    Article  Google Scholar 

  262. Wang L, Yang R, Xu Y, Niu Q, Pardalos PM, Fei M (2013) An improved adaptive binary harmony search algorithm. Inf Sci 232:58–87

    Article  MathSciNet  Google Scholar 

  263. Alsalibi AI, Shambour MKY, Abu-Hashem MA, Shehab M, Shambour Q, Muqat R (2022) Nonvolatile memory-based internet of things: a survey. In: Artificial intelligence-based internet of things systems. Springer, pp 285–304

  264. Fan Q, Chen Z, Xia Z (2020) A novel quasi-reflected Harris hawks optimization algorithm for global optimization problems. Soft Comput 1–19

  265. Shehab M, Khader A, Laouchedi M (2018) A hybrid method based on cuckoo search algorithm for global optimization problems. J Inf Commun Technol 17(3):469–491

    Google Scholar 

  266. Wright AH (1991) Genetic algorithms for real parameter optimization. In: Foundations of genetic algorithms. vol. 1. Elsevier, pp 205–218

  267. Liu Y, Wang G, Chen H, Dong H, Zhu X, Wang S (2011) An improved particle swarm optimization for feature selection. J Bionic Eng 8(2):191–200

    Article  Google Scholar 

  268. Shehab M, Mashal I, Momani Z, Shambour MKY, AL-Badareen A, Al-Dabet S, Bataina N, Alsoud AR, Abualigah L (2022) Harris hawks optimization algorithm: variants and applications. Arch Comput Methods Eng 1–25

  269. Qu C, He W, Peng X, Peng X (2020) Harris hawks optimization with information exchange. Applied mathematical modelling

  270. Bajpai P, Kumar M (2010) Genetic algorithm-an approach to solve global optimization problems. Indian J Comput Sci Eng 1(3):199–206

    Google Scholar 

  271. Abualigah L, Shehab M, Alshinwan M, Mirjalili S, Elaziz MA (2021) Ant lion optimizer: a comprehensive survey of its variants and applications. Arch Comput Methods Eng 28(3):1397–1416

    Article  MathSciNet  Google Scholar 

  272. Milad A (2013) Harmony search algorithm: strengths and weaknesses. J Comput Eng Inf Technol 2(1):1–7

    Google Scholar 

  273. Almomani SN, Shehab M, Al Ebbini MM, Shami AA (2021) The efficiency and effectiveness of the cyber security in maintaining the cloud accounting information. Acad Strateg Manag J 20:1–11

    Google Scholar 

  274. Zhang Y, Zhou X, Shih P-C (2020) Modified harris hawks optimization algorithm for global optimization problems. Arab J Sci Eng 1–26

  275. Shehab M, Khader AT, Alia MA (2019) Enhancing cuckoo search algorithm by using reinforcement learning for constrained engineering optimization problems. In: 2019 IEEE Jordan international joint conference on electrical engineering and information technology (JEEIT). IEEE, pp 812–816

  276. Zingg DW, Nemec M, Pulliam TH (2008) A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization. Eur J Comput Mech 17(1–2):103–126

    MATH  Google Scholar 

  277. Abualigah L, Shehab M, Alshinwan M, Alabool H, Abuaddous HY, Khasawneh AM, Al Diabat M (2020) Ts-gwo: Iot tasks scheduling in cloud computing using grey wolf optimizer. In: Swarm intelligence for cloud computing. Chapman and Hall/CRC, pp 127–152

  278. Kulturel-Konak S, Smith AE, Coit DW (2003) Efficiently solving the redundancy allocation problem using tabu search. IIE Trans 35(6):515–526

    Article  Google Scholar 

  279. Gálvez A, Fister I, Osaba E, Del Ser J, Iglesias A (2018) Automatic fitting of feature points for border detection of skin lesions in medical images with bat algorithm. In: International symposium on intelligent and distributed computing. Springer, pp 357–368

  280. Eiben AE, Smit SK (2011) Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol Comput 1(1):19–31

    Article  Google Scholar 

  281. Fister Jr I, Fister D, Yang X-S (2013) A hybrid bat algorithm. arXiv:1303.6310

Download references

Acknowledgements

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (22UQU4361183DSR05).

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Belal Abuhaija or Laith Abualigah.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehab, M., Abu-Hashem, M.A., Shambour, M.K.Y. et al. A Comprehensive Review of Bat Inspired Algorithm: Variants, Applications, and Hybridization. Arch Computat Methods Eng 30, 765–797 (2023). https://doi.org/10.1007/s11831-022-09817-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-022-09817-5