Skip to main content
Log in

Comprehensive Review on Various Gas Hydrate Modelling Techniques: Prospects and Challenges

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Gas hydrates is one the most complex flow assurance problems encountered in pipelines. The gas hydrate formation in pipelines eventually leads to the blockage of pipelines interrupting pipeline operations and affects transmission safety. Over the years, many mitigation techniques are employed to resolve gas hydrate issues in pipelines. But it is equally important to predict the formation and dissociation conditions of the hydrate formation as the experimental investigation is not always viable. So, an accurate prediction modelling approach is required for it. This paper provides a detailed overview of various gas hydrate modelling techniques. Initially, the details about the thermodynamic and kinetic properties of the gas hydrates are discussed. Furthermore, the discussion on the major aspects of the thermodynamic models, Kinetic models, Statistical Models, Models developed using Computational Fluid Dynamics, and Artificial Neural Networks techniques are highlighted. Finally, shortcomings and potential prospects of gas hydrate modelling procedures are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AA:

Anti-agglomerate

ALTA:

Automated lag time apparatus

ANOVA:

Analysis of variance

CCS:

Carbon capture and storage

CFD:

Computational fluid dynamics

CHNS:

Carbon hydrogen nitrogen and sulfur

CPA:

Cubic Plus Association

CSMGem:

Colorado School of Mines Gibbs Energy Minimization Model

CSMHyK:

Colorado School of Mines Hydrate Kinetic Model

DFM:

Drift flux model

DLVO:

Derjaguine Landaue Verweye Overbeek

DPM:

Discrete phase model

EDL:

Electrical double layer

EES:

Engineering equation solver

EOS:

Equation of state

GA:

Genetic algorithm

GHBS:

Gas hydrate bearing sedimentation

HFT:

Hydrate formation temperature

HLVE:

Hydrate liquid vapour equilibrium

ICA:

Imperialist competitive algorithm

KHI:

Kinetic hydrate inhibitor

LCVM:

Linear combination of vidal and michelson

LDHI:

Low dosage hydrate inhibitor

MSE:

Mean square error

NMR:

Nuclear magnetic resonance

PBM:

Population balance model

PDF:

Probability distribution functions

PSA:

Particle swarm algorithm

PSD:

Particle size distribution

SPSS:

Statistical product and service solutions

SSE:

Sum of squares error

TFM:

Two-phase model

THF:

Tetrahydrofuran

THI:

Thermodynamic hydrate inhibitor

vdWP:

Van der Waals and Platteeuw

VLE:

Vapour liquid equilibrium

VSE:

Vapour solid equilibrium

CHB :

Threshold for hydrogen bonding

σHB :

Sigma profile

aeff :

Effective contact area between two surface segments

σdonor :

Function of the polarization charge donor interacting segments

σacceptor :

Function of the polarization charge acceptor interacting segments

T:

Temperature, K

Tf( i) :

Freezing point temperatures of water, 273 K

Tf :

Freezing point temperatures of AILs solution, K

P:

Pressure, MPa

n:

Hydration number

ΔHdiss :

Dissociation enthalpy, kJ

a:

Activity coefficient

z:

Compressibility factor

m:

Number of data points

R:

Universal gas constant, 8.314 J/(mol K)

ΔHFUS ( i) :

Heat of fusion of ice, 6008 J/mol

P:

Pressure, MPa

γg :

Gas gravity

References

  1. Ai Krishna Sahith SJ, Pedapati SR, Lal B (2019) Application of artificial neural networks on measurement of gas hydrates in pipelines. Test Eng Manag 81:5769–5774

    Google Scholar 

  2. Khan MS, Lal B, Shariff AM, Mukhtar H (2019) Ammonium hydroxide ILs as dual-functional gas hydrate inhibitors for binary mixed gas (carbon dioxide and methane) hydrates. J Mol Liq 274:33–44. https://doi.org/10.1016/j.molliq.2018.10.076

    Article  Google Scholar 

  3. Jassim E, Abdi MA, Muzychka Y (2010) A new approach to investigate hydrate deposition in gas-dominated flowlines. J Nat Gas Sci Eng 2:163–177. https://doi.org/10.1016/j.jngse.2010.05.005

    Article  Google Scholar 

  4. Qasim A, Khan MS, Lal B, Shariff AM (2019) A perspective on dual purpose gas hydrate and corrosion inhirbitors for flow assurance. J Pet Sci Eng 183:106418

    Article  Google Scholar 

  5. Ke W, Chen D (2019) A short review on natural gas hydrate, kinetic hydrate inhibitors and inhibitor synergists. Chin J Chem Eng 27:2049–2061. https://doi.org/10.1016/j.cjche.2018.10.010

    Article  Google Scholar 

  6. Esmaeilzadeh F, Hamedi N, Karimipourfard D, Rasoolzadeh A (2020) An insight into the role of the association equations of states in gas hydrate modeling: a review. Pet Sci 17:1432–1450. https://doi.org/10.1007/s12182-020-00471-9

    Article  Google Scholar 

  7. Sloan ED (1998) Gas hydrates : review of physical/chemical properties. Energy Fuels 0624:191–196

    Article  Google Scholar 

  8. Sloan D, Koh C (2000) Clathrate hydrates of natural gases, 2nd Ed revised and expanded by E. Dendy Sloan, Jr. Marcel Dekker, Inc.: New York, 1998; 705 pp. Software Included. $195.00. Energy Fuels. https://doi.org/10.1021/ef000056e

    Article  Google Scholar 

  9. Chong ZR, Yang SHB, Babu P et al (2016) Review of natural gas hydrates as an energy resource: prospects and challenges. Appl Energy 162:1633–1652. https://doi.org/10.1016/j.apenergy.2014.12.061

    Article  Google Scholar 

  10. Zhang ZG, Wang Y, Gao LF et al (2012) Marine gas hydrates: future energy or environmental killer? Energy Proc 16:933–938. https://doi.org/10.1016/j.egypro.2012.01.149

    Article  Google Scholar 

  11. Giustiniani M, Tinivella U, Jakobsson M, Rebesco M (2013) Arctic ocean gas hydrate stability in a changing climate. J Geol Res 2013:1–10. https://doi.org/10.1155/2013/783969

    Article  Google Scholar 

  12. Dashti H, Zhehao Yew L, Lou X (2015) Recent advances in gas hydrate-based CO2 capture. J Nat Gas Sci Eng 23:195–207. https://doi.org/10.1016/j.jngse.2015.01.033

    Article  Google Scholar 

  13. Cai L, Pethica BA, Debenedetti PG, Sundaresan S (2016) Formation of cyclopentane methane binary clathrate hydrate in brine solutions. Chem Eng Sci 141:125–132. https://doi.org/10.1016/j.ces.2015.11.001

    Article  Google Scholar 

  14. Hassanpouryouzband A, Joonaki E, Vasheghani Farahani M et al (2020) Gas hydrates in sustainable chemistry. Chem Soc Rev 49:5225–5309. https://doi.org/10.1039/c8cs00989a

    Article  Google Scholar 

  15. Fakharian H, Ganji H, Naderifar A (2017) Saline produced water treatment using gas hydrates. J Environ Chem Eng 5:4269–4273. https://doi.org/10.1016/j.jece.2017.08.008

    Article  Google Scholar 

  16. Nassrullah H, Anis SF, Hashaikeh R, Hilal N (2020) Energy for desalination: a state-of-the-art review. Desalination. https://doi.org/10.1016/j.desal.2020.114569

    Article  Google Scholar 

  17. Khan MS, Lal B, Sabil KM, Ahmed I (2019) Desalination of seawater through gas hydrate process: an overview. J Adv Res Fluid Mech Therm Sci 55:65–73

    Google Scholar 

  18. Veluswamy HP, Kumar R, Linga P (2014) Hydrogen storage in clathrate hydrates: current state of the art and future directions. Appl Energy. https://doi.org/10.1016/j.apenergy.2014.01.063

    Article  Google Scholar 

  19. Lee H, Lee JW, Kim DY et al (2010) Tuning clathrate hydrates for hydrogen storage. Mater Sustain Energy Collect Peer-Reviewed Res Rev Artic from Nat Publ Gr 434:285–288. https://doi.org/10.1142/9789814317665_0042

    Article  Google Scholar 

  20. Gbaruko BC, Igwe JC, Gbaruko PN, Nwokeoma RC (2007) Gas hydrates and clathrates: flow assurance, environmental and economic perspectives and the Nigerian liquified natural gas project. J Pet Sci Eng 56:192–198. https://doi.org/10.1016/j.petrol.2005.12.011

    Article  Google Scholar 

  21. Fournaison L, Delahaye A, Chatti I, Petitet JP (2004) CO2 hydrates in refrigeration processes. Ind Eng Chem Res 43:6521–6526. https://doi.org/10.1021/ie030861r

    Article  Google Scholar 

  22. Englezos P (1993) Clathrate hydrates. Ind Eng Chem Res 32:1251–1274. https://doi.org/10.1021/ie00019a001

    Article  Google Scholar 

  23. Bishnoi PR, Natarajan V (1996) Formation and decomposition of gas hydrates. Fluid Phase Equilib 117:168–177. https://doi.org/10.1016/0378-3812(95)02950-8

    Article  Google Scholar 

  24. Nygaard HF (1990) Hydrate properties in multiphase transportation systems

  25. Daraboina N, Pachitsas S, Von Solms N (2015) Natural gas hydrate formation and inhibition in gas/crude oil/aqueous systems. Fuel 148:186–190. https://doi.org/10.1016/j.fuel.2015.01.103

    Article  Google Scholar 

  26. Rai R, Sharma PK, Mukerjie RK, Commission NG (1991) Multiphase long-distance pipeline transportation: an emerging technology for offshore production

  27. Griffith P (1984) Multiphase flow in pipes. J Pet Technol 36:361–367. https://doi.org/10.2118/12895-PA

    Article  Google Scholar 

  28. Dorstewitz F, Gmbh QVFG, Mewes D (1995) hydrate formation in pipelines: I

  29. Charlton TB, Di Lorenzo M, Zerpa LE et al (2018) Simulating hydrate growth and transport behavior in gas-dominant flow. Energy Fuels 32:1012–1023. https://doi.org/10.1021/acs.energyfuels.7b02199

    Article  Google Scholar 

  30. Lal B, Nashed O (2020) Chemical additives for gas hydrates. Springer, Switzerland

    Book  Google Scholar 

  31. Partoon B, Sahith SJK, Lal B, Bin MAS (2020) Gas hydrate models. Chemical additives for gas hydrates. Springer, Cham, pp 67–85

    Chapter  Google Scholar 

  32. Smith C, Barifcani A Gas hydrate formation and dissociation numerical modelling with nitrogen and carbon dioxide

  33. Toyin Olabisi O, Chukwuemeka Emmanuel U (2019) Simulation of laboratory hydrate loop using aspen HYSYS. Eng Appl Sci 4:52. https://doi.org/10.11648/j.eas.20190403.11

    Article  Google Scholar 

  34. Davarnejad R (2014) Prediction of gas hydrate formation using HYSYS software. Int J Eng 27:1325–1330. https://doi.org/10.5829/idosi.ije.2014.27.09c.01

    Article  Google Scholar 

  35. Nergaard M, Grimholt C (2010) An introduction to scaling causes, problems and solutions

  36. Koh CA, Sloan ED, Sum AK, Wu DT (2011) Fundamentals and applications of gas hydrates. Ann Rev Chem Biomol Eng 2:237–257. https://doi.org/10.1146/annurev-chembioeng-061010-114152

    Article  Google Scholar 

  37. Hester KC, Dunk RM, White SN et al (2007) Gas hydrate measurements at Hydrate Ridge using Raman spectroscopy. Geochim Cosmochim Acta 71:2947–2959. https://doi.org/10.1016/j.gca.2007.03.032

    Article  Google Scholar 

  38. Lu H, Seo YT, Lee JW et al (2007) Complex gas hydrate from the Cascadia margin. Nature 445:303–306. https://doi.org/10.1038/nature05463

    Article  Google Scholar 

  39. Koh CA (2002) Towards a fundamental understanding of natural gas hydrates. Chem Soc Rev 31:157–167. https://doi.org/10.1039/b008672j

    Article  Google Scholar 

  40. Lehmkühler F, Paulus M, Sternemann C et al (2009) The carbon dioxide-water interface at conditions of gas hydrate formation. J Am Chem Soc 131:585–589. https://doi.org/10.1021/ja806211r

    Article  Google Scholar 

  41. Thompson H, Soper AK, Buchanan P et al (2006) Methane hydrate formation and decomposition: structural studies via neutron diffraction and empirical potential structure refinement. J Chem Phys. https://doi.org/10.1063/1.2191056

    Article  Google Scholar 

  42. Murshed MM, Kuhs WF (2009) Kinetic studies of methaneethane mixed gas hydrates by neutron diffraction and raman spectroscopy. J Phys Chem B 113:5172–5180. https://doi.org/10.1021/jp810248s

    Article  Google Scholar 

  43. Udachin KA, Ratcliffe CI, Ripmeester JA (2001) Structure, composition, and thermal expansion of CO2 hydrate from single crystal x-ray diffraction measurements. J Phys Chem B 105:4200–4204. https://doi.org/10.1021/jp004389o

    Article  Google Scholar 

  44. Udachin KA, Lu H, Enright GD et al (2007) Single crystals of naturally occurring gas hydrates: the structures of methane and mixed hydrocarbon hydrates. Angew Chemie Int Ed 46:8220–8222. https://doi.org/10.1002/anie.200701821

    Article  Google Scholar 

  45. Koh CA, Sloan E, Sum A (2011) Natural gas hydrates in flow assurance

  46. Lide DR, Baysinger G (2019) Physical constants of organic compounds. CRC Handb Chem Phys. https://doi.org/10.1201/9781315380476-3

    Article  Google Scholar 

  47. Waite WF (2007) Thermal properties of methane gas hydrates. Usgs. https://doi.org/10.1063/1.2194481.Waite

    Article  Google Scholar 

  48. Huang D, Fan S (2004) Thermal conductivity of methane hydrate formed from sodium dodecyl sulfate solution. J Chem Eng Data 49:1479–1482. https://doi.org/10.1021/je0498098

    Article  Google Scholar 

  49. Waite WF, Santamarina JC, Cortes DD, et al (2009) Physical properties of hydrate-bearing sediments. 1–38. https://doi.org/10.1029/2008RG000279.Table

  50. Ning FL, Glavatskiyb K, Jic Z, Kjelstrupd S (2014) Compressibility, thermal expansion coefficient and heat capacity of CH4 and CO2 hydrate mixtures using molecular dynamics simulations. Phys Chem Chem Phys 17:2869

    Article  Google Scholar 

  51. Okuda M, Hachikubo A, Sakagami H, Shoji H (2009) Dissociation heat from mixed-gas hydrate composed of methane and ethane to their gases and water. Summ JSSI JSSE Jt Conf Snow Ice Res 2009:217. https://doi.org/10.14851/jcsir.2009.0.217.0

    Article  Google Scholar 

  52. Helgerud MB, Waite WF, Kirby SH, Nur A (2009) Elastic wave speeds and moduli in polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate. J Geophys Res Solid Earth 114:1–11. https://doi.org/10.1029/2008JB006132

    Article  Google Scholar 

  53. Lee MW, Hutchinson DR, Collett TS, Dillon WP (1996) Seismic velocities for hydrate-bearing sediments using weighted equation. J Geophys Res B Solid Earth 101:20347–20358. https://doi.org/10.1029/96jb01886

    Article  Google Scholar 

  54. Arquitectura EY, Introducci TI, 赫晓霞, et al (2015) No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title

  55. Helgerud MB, Waite WF, Kirby SH, Nur A (2003) Measured temperature and pressure dependence of compressional (Vp) and shear (Vs) wave speeds in compacted, polycrystalline ice lh. Can J Phys 81:81–87. https://doi.org/10.1139/p03-008

    Article  Google Scholar 

  56. Mork M, Schei G, Larsen R (2000) NMR imaging study of hydrates in sediments. Ann N Y Acad Sci 912:897–905. https://doi.org/10.1111/j.1749-6632.2000.tb06843.x

    Article  Google Scholar 

  57. Waite WF, Stern LA, Kirby SH et al (2007) Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate. Geophys J Int 169:767–774. https://doi.org/10.1111/j.1365-246X.2007.03382.x

    Article  Google Scholar 

  58. Luz Yolanda Toro Suarez (2015) No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title. 1–27

  59. Sloan ED, Koh CA (2007) Clathrate hydrates of natural gases. CRC Press Taylor & Francis

  60. van der Waals JH, Platteeuw JC (2007) Clathrate solutions I:1–57. https://doi.org/10.1002/9780470143483.ch1

    Article  Google Scholar 

  61. Boxall J, Davies S, Koh C, Sloan ED (2009) Predicting when and where hydrate plugs form in oil-dominated flowlines. SPE Proj Facil Constr 4:80–86. https://doi.org/10.2118/129538-pa

    Article  Google Scholar 

  62. Rauf A, Faisal H, Asadullah M (2009) Energy resources potential of methane

  63. Javanmardi J, Nasrifar K, Najibi SH, Moshfeghian M (2007) Natural gas transportation: NGH or LNG? World Rev Sci Technol Sustain Dev 4:258–267. https://doi.org/10.1504/WRSTSD.2007.013585

    Article  Google Scholar 

  64. Freer EM, Selim MS, Sloan ED (2001) Methane hydrate film growth kinetics. Fluid Phase Equilib 185:65–75

    Article  Google Scholar 

  65. Sjöblom J, Øvrevoll B, Jentoft GH et al (2010) Investigation of the hydrate plugging and non-plugging properties of oils. J Dispers Sci Technol 31:1100–1119. https://doi.org/10.1080/01932690903224698

    Article  Google Scholar 

  66. Aman ZM, Dieker LE, Aspenes G et al (2010) Influence of model oil with surfactants and amphiphilic polymers on cyclopentane hydrate adhesion forces. Energy Fuels 24:5441–5445. https://doi.org/10.1021/ef100762r

    Article  Google Scholar 

  67. Dieker LE, Aman ZM, George NC et al (2009) Micromechanical adhesion force measurements between hydrate particles in hydrocarbon oils and their modifications. Energy Fuels 23:5966–5971. https://doi.org/10.1021/ef9006615

    Article  Google Scholar 

  68. Matthews PN, Notz PK, Widener MW, Prukop G (2000) Flow loop experiments determine hydrate plugging tendencies in the field. Ann N Y Acad Sci 912:330–338. https://doi.org/10.1111/j.1749-6632.2000.tb06787.x

    Article  Google Scholar 

  69. Vysniauskas A, Bishnoi PR (1983) A kinetic study of methane hydrate formation. Chem Eng Sci 38:1061–1072. https://doi.org/10.1016/0009-2509(83)80027-X

    Article  Google Scholar 

  70. Willard IW, Carson DB, Katz DL (1941) Natural gas hydrates. Ind Eng Chem 33:662–665. https://doi.org/10.1016/B978-0-7506-8490-3.X0001-8

    Article  Google Scholar 

  71. Mohamadi-Baghmolaei M, Hajizadeh A, Azin R, Izadpanah AA (2018) Assessing thermodynamic models and introducing novel method for prediction of methane hydrate formation. J Pet Explor Prod Technol 8:1401–1412. https://doi.org/10.1007/s13202-017-0415-2

    Article  Google Scholar 

  72. Zaporozhets EP, Shostak NA (2019) Selecting ways of calculating langmuir constants for determining the parameters of gas hydrates. Russ J Phys Chem A 93:1443–1448. https://doi.org/10.1134/S0036024419070331

    Article  Google Scholar 

  73. Saito S, Marshall DR, Kobayashi R (1964) Hydrates at high pressures: Part II—application of statistical mechanics to the study of the hydrates of methane, argon, and nitrogen. AIChE J 10:734–740. https://doi.org/10.1002/aic.690100530

    Article  Google Scholar 

  74. Chapoy A, Tohidi B (2012) Hydrates in high MEG concentration systems. In: Proc 3rd gas process symp 366–373. https://doi.org/10.1016/b978-0-444-59496-9.50050-3

  75. Soave G (1972) Equilibrium constants from a modified Redlich-Kwong equation of state. Chem Eng Sci 27:1197–1203. https://doi.org/10.1016/0009-2509(72)80096-4

    Article  Google Scholar 

  76. Nasrifar K, Bolland O (2006) Simplified hard-sphere and hard-sphere chain equations of state for engineering applications. Chem Eng Commun 193:1277–1293. https://doi.org/10.1080/00986440500511262

    Article  Google Scholar 

  77. Khan MN, Warrier P, Peters CJ, Koh CA (2018) Advancements in hydrate phase equilibria and modeling of gas hydrates systems. Fluid Phase Equilib 463:48–61. https://doi.org/10.1016/j.fluid.2018.01.014

    Article  Google Scholar 

  78. Michelsen ML (1990) A modified Huron-Vidal mixing rule for cubic equations of state. Fluid Phase Equilib 60:213

    Article  Google Scholar 

  79. Partoon B, Sabil KM, Roslan H et al (2016) Impact of acetone on phase boundary of methane and carbon dioxide mixed hydrates. Fluid Phase Equilib 412:51–56. https://doi.org/10.1016/j.fluid.2015.12.027

    Article  Google Scholar 

  80. Ameripour S (2005) Prediction of gas-hydrate formation conditions in production and surface facilities prediction of gas-hydrate formation conditions in production and surface facilities. 79

  81. Barrer RM, Stuart WI (1957) Non-stoicheiometric clathrate compounds of water. Proc R Soc London Ser A Math Phys Sci 243:172–189. https://doi.org/10.1098/rspa.1957.0213

    Article  Google Scholar 

  82. Gaillard C, Monfort JP, Peytavy JL (1999) Investigation of methane hydrate formation in a recirculating flow loop: modeling of the kinetics and tests of efficiency of chemical additives on hydrate inhibition. Rev l’Institut Fr du Pet 54:365–374

    Google Scholar 

  83. Chapoy A, Burgass R, Tohidi B, Alsiyabi I (2015) Hydrate and phase behavior modeling in CO2-rich pipelines. J Chem Eng Data 60:447–463. https://doi.org/10.1021/je500834t

    Article  Google Scholar 

  84. Partoon B, Wong NMS, Sabil KM et al (2013) A study on thermodynamics effect of [EMIM]-Cl and [OH-C2MIM]-Cl on methane hydrate equilibrium line. Fluid Phase Equilib 337:26–31. https://doi.org/10.1016/j.fluid.2012.09.025

    Article  Google Scholar 

  85. Partoon B, Nashed O, Kassim Z et al (2016) Gas hydrate equilibrium measurement of methane + carbon dioxide + tetrahydrofuran+ water system at high CO2 concentrations. Procedia Eng 148:1220–1224. https://doi.org/10.1016/j.proeng.2016.06.455

    Article  Google Scholar 

  86. Javanmardi J, Partoon B, Sabzi F (2011) Prediction of hydrate formation conditions based on the vdWP-type models at high pressures. Can J Chem Eng 89:254–263. https://doi.org/10.1002/cjce.20395

    Article  Google Scholar 

  87. Partoon B, Sahith SJK, Lal B, Bin MAS (2020) Gas hydrate models BT: chemical additives for gas hydrates. In: Nashed O (ed) Lal B. Springer, Cham, pp 67–85

    Google Scholar 

  88. Sabil KM, Nashed O, Lal B et al (2015) Experimental investigation on the dissociation conditions of methane hydrate in the presence of imidazolium-based ionic liquids. J Chem Thermodyn 84:7–13. https://doi.org/10.1016/j.jct.2014.12.017

    Article  Google Scholar 

  89. Nashed O, Dadebayev D, Khan MS et al (2018) Experimental and modelling studies on thermodynamic methane hydrate inhibition in the presence of ionic liquids. J Mol Liq 249:886–891. https://doi.org/10.1016/j.molliq.2017.11.115

    Article  Google Scholar 

  90. Nashed O, Sabil KM, Lal B et al (2014) Study of 1-(2-hydroxyethyle) 3-methylimidazolium halide as thermodynamic inhibitors. Appl Mech Mater 625:337–340

    Article  Google Scholar 

  91. Bharathi A, Nashed O, Lal B, Foo KS (2021) Experimental and modeling studies on enhancing the thermodynamic hydrate inhibition performance of monoethylene glycol via synergistic green material. Sci Rep 11:2396. https://doi.org/10.1038/s41598-021-82056-z

    Article  Google Scholar 

  92. Nashed O, Sabil KM, Ismail L, Jaafar A (2014) Hydrate equilibrium measurement of single CO2 and CH4 hydrates using micro DSC. J Appl Sci 14:3364–3368. https://doi.org/10.3923/jas.2014.3364.3368

    Article  Google Scholar 

  93. Bavoh CB, Nashed O, Khan MS et al (2018) The impact of amino acids on methane hydrate phase boundary and formation kinetics. J Chem Thermodyn 117:48–53. https://doi.org/10.1016/j.jct.2017.09.001

    Article  Google Scholar 

  94. Bavoh CB, Partoon B, Lal B, Kok Keong L (2017) Methane hydrate-liquid-vapour-equilibrium phase condition measurements in the presence of natural amino acids. J Nat Gas Sci Eng 37:425–434. https://doi.org/10.1016/j.jngse.2016.11.061

    Article  Google Scholar 

  95. Bavoh CB, Md Yuha YB, Tay WH et al (2019) Experimental and modelling of the impact of quaternary ammonium salts/ionic liquid on the rheological and hydrate inhibition properties of xanthan gum water-based muds for drilling gas hydrate-bearing rocks. J Pet Sci Eng 183:106468. https://doi.org/10.1016/j.petrol.2019.106468

    Article  Google Scholar 

  96. Yuha YBM, Bavoh CB, Lal B, Broni-Bediako E (2020) Methane hydrate phase behaviour in EMIM-Cl water based mud (WBM): an experimental and modelling study. South African J Chem Eng 34:47–56. https://doi.org/10.1016/j.sajce.2020.06.001

    Article  Google Scholar 

  97. Khan MS, Bavoh CB, Partoon B et al (2018) Impacts of ammonium based ionic liquids alkyl chain on thermodynamic hydrate inhibition for carbon dioxide rich binary gas. J Mol Liq. https://doi.org/10.1016/j.molliq.2018.04.015

    Article  Google Scholar 

  98. Foo KS, Khan MS, Lal B, Sufian S (2018) Semi-clathratic impact of tetrabutylammonium hydroxide on the carbon dioxide hydrates. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/458/1/012060

    Article  Google Scholar 

  99. Khan MS, Lal B, Keong LK, Ahmed I (2019) Tetramethyl ammonium chloride as dual functional inhibitor for methane and carbon dioxide hydrates. Fuel 236:251–263. https://doi.org/10.1016/j.fuel.2018.09.001

    Article  Google Scholar 

  100. Khan MS, Bavoh CB, Partoon B et al (2018) Impacts of ammonium based ionic liquids alkyl chain on thermodynamic hydrate inhibition for carbon dioxide rich binary gas. J Mol Liq 261:283–290. https://doi.org/10.1016/j.molliq.2018.04.015

    Article  Google Scholar 

  101. Khan MS, Lal B, Keong LK, Sabil KM (2018) Experimental evaluation and thermodynamic modelling of AILs alkyl chain elongation on methane riched gas hydrate system. Fluid Phase Equilib 473:300–309. https://doi.org/10.1016/j.fluid.2018.07.003

    Article  Google Scholar 

  102. Khan MS, Bavoh CB, Lal B et al (2018) Application of electrolyte based model on ionic liquids-methane hydrates phase boundary. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/458/1/012073

    Article  Google Scholar 

  103. Yaqub S, Lal B, Keong LK (2019) Thermodynamic and kinetic effect of biodegradable polymers on carbondioxide hydrates. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2019.06.017

    Article  Google Scholar 

  104. Qasim A, Khan MS, Lal B, Shariff AM (2019) Phase equilibrium measurement and modeling approach to quaternary ammonium salts with and without monoethylene glycol for carbon dioxide hydrates. J Mol Liq 282:106–114. https://doi.org/10.1016/j.molliq.2019.02.115

    Article  Google Scholar 

  105. Qasim A, Khan MS, Lal B et al (2020) Quaternary ammonium salts as thermodynamic hydrate inhibitors in the presence and absence of monoethylene glycol for methane hydrates. Fuel 259:116219. https://doi.org/10.1016/j.fuel.2019.116219

    Article  Google Scholar 

  106. Dholabhai PD, Englezos P, Kalogerakis N (1987) Kinetics of formation of methane and ethane gas hydrates. Chem Eng Sci 42:2647–2658

    Article  Google Scholar 

  107. Christiansen RL, Bansal V, Sloan ED (1994) Avoiding hydrates in the petroleum industry: kinetics of formation. Proc Univ Tulsa Centen Pet Eng Symp c:383–393. https://doi.org/10.2523/27994-ms

    Article  Google Scholar 

  108. Hussain SMT, Kumar A, Laik S et al (2006) Study of the kinetics and morphology of gas hydrate formation. Chem Eng Technol 29:937–943. https://doi.org/10.1002/ceat.200500222

    Article  Google Scholar 

  109. Tajima H (2011) Gas hydrate formation kinetics in semi-batch flow reactor equipped with static mixer. Hydrodyn Optim Methods Tools. https://doi.org/10.5772/23335

    Article  Google Scholar 

  110. Hong SY, Il LJ, Kim JH, Lee JD (2012) Kinetic studies on methane hydrate formation in the presence of kinetic inhibitor via in situ Raman spectroscopy. Energy Fuels 26:7045–7050. https://doi.org/10.1021/ef301371x

    Article  Google Scholar 

  111. Park SY, Kim J, Choi IW, et al (2013) Performance evaluation of kinetic hydrate inhibitors for well fluids experiencing hydrate formation. Soc pet eng: int pet technol conf 2013, IPTC 2013 Challenging Technol Econ Limits to Meet Glob Energy Demand 4:3126–3130. https://doi.org/10.2523/iptc-16820-ms

  112. Sun M, Firoozabadi A (2014) Natural gas hydrate particles in oil-free systems with kinetic inhibition and slurry viscosity reduction. Energy Fuels 28:1890–1895. https://doi.org/10.1021/ef402517c

    Article  Google Scholar 

  113. Kumar A, Bhattacharjee G, Kulkarni BD, Kumar R (2015) Role of surfactants in promoting gas hydrate formation. Ind Eng Chem Res 54:12217–12232. https://doi.org/10.1021/acs.iecr.5b03476

    Article  Google Scholar 

  114. Liu JY, Zhang J, Liu YL et al (2015) Experimental and modeling studies on the prediction of gas hydrate formation. J Chem. https://doi.org/10.1155/2015/198176

    Article  Google Scholar 

  115. Mali GA, Chapoy A, Tohidi B (2018) Investigation into the effect of subcooling on the kinetics of hydrate formation. J Chem Thermodyn 117:91–96. https://doi.org/10.1016/j.jct.2017.08.014

    Article  Google Scholar 

  116. Tian Y, Li Y, An H et al (2017) Kinetics of Methane Hydrate Formation in an Aqueous Solution with and without Kinetic Promoter (SDS) by Spray Reactor. J Chem. https://doi.org/10.1155/2017/5208915

    Article  Google Scholar 

  117. Abedi-Farizhendi S, Rahmati-Abkenar M, Manteghian M et al (2019) Kinetic study of propane hydrate in the presence of carbon nanostructures and SDS. J Pet Sci Eng 172:636–642. https://doi.org/10.1016/j.petrol.2018.04.075

    Article  Google Scholar 

  118. Abedi-Farizhendi S, Iranshahi M, Mohammadi A et al (2019) Kinetic study of methane hydrate formation in the presence of carbon nanostructures. Pet Sci 16:657–668. https://doi.org/10.1007/s12182-019-0327-5

    Article  Google Scholar 

  119. Xin Y, Zhang J, He Y, Wang C (2019) Modelling and experimental study of hydrate formation kinetics of natural gas-water-surfactant system in a multi-tube bubble column reactor. Can J Chem Eng 97:2765–2776. https://doi.org/10.1002/cjce.23515

    Article  Google Scholar 

  120. Hassanpouryouzband A, Yang J, Okwananke A et al (2019) An experimental investigation on the kinetics of integrated methane recovery and CO2 sequestration by injection of flue gas into permafrost methane hydrate reservoirs. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-52745-x

    Article  Google Scholar 

  121. Ke W, Chen GJ, Chen D (2020) Methane–propane hydrate formation and memory effect study with a reaction kinetics model. Prog React Kinet Mech. https://doi.org/10.1177/1468678320901622

    Article  Google Scholar 

  122. Ribeiro CP, Lage PLC (2008) Modelling of hydrate formation kinetics: State-of-the-art and future directions. Chem Eng Sci 63:2007

    Article  Google Scholar 

  123. Yin Z, Khurana M, Tan HK, Linga P (2018) A review of gas hydrate growth kinetic models. Chem Eng J 342:9–29. https://doi.org/10.1016/j.cej.2018.01.120

    Article  Google Scholar 

  124. Mu L, Li S, Ma QL et al (2014) Experimental and modeling investigation of kinetics of methane gas hydrate formation in water-in-oil emulsion. Fluid Phase Equilib 362:28–34. https://doi.org/10.1016/j.fluid.2013.08.028

    Article  Google Scholar 

  125. Yin Z, Chong ZR, Tan HK, Linga P (2016) Review of gas hydrate dissociation kinetic models for energy recovery. J Nat Gas Sci Eng. https://doi.org/10.1016/j.jngse.2016.04.050

    Article  Google Scholar 

  126. Liu X, Flemings PB (2007) Dynamic multiphase flow model of hydrate formation in marine sediments. J Geophys Res Solid Earth. https://doi.org/10.1029/2005JB004227

    Article  Google Scholar 

  127. Uddin M, Coombe D, Law D, Gunter B (2008) Numerical studies of gas hydrate formation and decomposition in a geological reservoir. J Energy Resour Technol 130:032501. https://doi.org/10.1115/1.2956978

    Article  Google Scholar 

  128. Hashemi S, Macchi A, Servio P (2007) Gas hydrate growth model in a semibatch stirred tank reactor. Ind Eng Chem Res 46:5907–5912. https://doi.org/10.1021/ie061048

    Article  Google Scholar 

  129. Bergeron S, Servio P (2008) Reaction rate constant of propane hydrate formation. Fluid Phase Equilib 265:30–36. https://doi.org/10.1016/j.fluid.2007.12.001

    Article  Google Scholar 

  130. Salamatin AN, Hondoh T, Uchida T, Lipenkov VY (1998) Post-nucleation conversion of an air bubble to clathrate air-hydrate crystal in ice. J Cryst Growth 193:197–218. https://doi.org/10.1016/S0022-0248(98)00488-6

    Article  Google Scholar 

  131. Wang X, Schultz AJ, Halpern Y (2002) Kinetics of methane hydrate formation from polycrystalline deuterated ice. J Phys Chem A 106:7304–7309. https://doi.org/10.1021/jp025550t

    Article  Google Scholar 

  132. Staykova DK, Kuhs WF, Salamatin AN, Hansen T (2003) Formation of porous gas hydrates from ice powders: diffraction experiments and multistage model. J Phys Chem B 107:10299–10311. https://doi.org/10.1021/jp027787v

    Article  Google Scholar 

  133. Shindo Y, Lund PC, Fujioka Y, Komiyama H (1993) Kinetics of formation of CO2 hydrate. Energy Convers Manag 34:1073–1079. https://doi.org/10.1016/0196-8904(93)90055-F

    Article  Google Scholar 

  134. Shindo Y, Lund PC, Fujioka Y, Komiyama H (1993) Kinetics and mechanism of the formation of CO2hydrate. Int J Chem Kinet 25:777–782. https://doi.org/10.1002/kin.550250908

    Article  Google Scholar 

  135. Shindo Y, Sakaki K, Fujioka Y, Komiyama H (1996) Kinetics of the formation of CO2 hydrate on the surface of liquid CO2 droplet in water. Energy Convers Manag 37:485–489. https://doi.org/10.1016/0196-8904(95)00198-0

    Article  Google Scholar 

  136. Lund PC, Shindo Y, Fujioka Y, Komiyama H (1994) Study of the pseudo-steady-state kinetics of CO2 hydrate formation and stability. Int J Chem Kinet 26:289–297. https://doi.org/10.1002/kin.550260207

    Article  Google Scholar 

  137. Dalmazzone D, Hamed N, Dalmazzone C (2009) DSC measurements and modelling of the kinetics of methane hydrate formation in water-in-oil emulsion. Chem Eng Sci 64:2020–2026. https://doi.org/10.1016/j.ces.2009.01.028

    Article  Google Scholar 

  138. Teng H, Yamasaki A, Shindo Y (1996) Stability of the hydrate layer formed on the surface of a CO2 droplet in high-pressure, low-temperature water. Chem Eng Sci 51:4979–4986. https://doi.org/10.1016/0009-2509(96)00358-2

    Article  Google Scholar 

  139. Uchida T, Ebinuma T, Kawabata J, Narita H (1999) Microscopic observations of formation processes of clathrate-hydrate films at an interface between water and carbon dioxide. J Cryst Growth 204:348–356. https://doi.org/10.1016/S0022-0248(99)00178-5

    Article  Google Scholar 

  140. Mori YH (2001) Estimating the thickness of hydrate films from their lateral growth rates: application of a simplified heat transfer model. J Cryst Growth 223:206–212. https://doi.org/10.1016/S0022-0248(01)00614-5

    Article  Google Scholar 

  141. Peng BZ, Dandekar A, Sun CY et al (2007) Hydrate film growth on the surface of a gas bubble suspended in water. J Phys Chem B 111:12485–12493. https://doi.org/10.1021/jp074606m

    Article  Google Scholar 

  142. Mochizuki T, Mori YH (2006) Clathrate-hydrate film growth along water/hydrate-former phase boundaries-numerical heat-transfer study. J Cryst Growth 290:642–652. https://doi.org/10.1016/j.jcrysgro.2006.01.036

    Article  Google Scholar 

  143. Skovborg P, Rasmussen P (1994) A mass transport limited model for the growth of methane and ethane gas hydrates. Chem Eng Sci 49:1131–1143. https://doi.org/10.1016/0009-2509(94)85085-2

    Article  Google Scholar 

  144. Herri JM, Pic JS, Gruy F, Cournil M (1999) Methane hydrate crystallization mechanism from in-situ particle sizing. AIChE J 45:590–602. https://doi.org/10.1002/aic.690450316

    Article  Google Scholar 

  145. Al-Otaibi F, Clarke M, Maini B, Bishnoi PR (2010) Formation kinetics of structure i clathrates of methane and ethane using an in situ particle size analyzer. Energy Fuels 24:5012–5022. https://doi.org/10.1021/ef100560f

    Article  Google Scholar 

  146. Turner DJ, Miller KT, Dendy Sloan E (2009) Methane hydrate formation and an inward growing shell model in water-in-oil dispersions. Chem Eng Sci 64:3996–4004. https://doi.org/10.1016/j.ces.2009.05.051

    Article  Google Scholar 

  147. Sun C, Chen G, Guo T et al (2002) Kinetics of methane hydrate decomposition. Huagong Xuebao/J Chem Ind Eng 42:1645

    Google Scholar 

  148. Vysniauskas A, Bishnoi PR (1985) Kinetics of ethane hydrate formation. Chem Eng Sci 40:299–303. https://doi.org/10.1016/0009-2509(85)80070-1

    Article  Google Scholar 

  149. Lekvam K, Ruoff P (1993) A reaction kinetic mechanism for methane hydrate formation in liquid water. J Am Chem Soc 115:8565–8569. https://doi.org/10.1021/ja00072a007

    Article  Google Scholar 

  150. Zerpa LE, Sloan ED, Sum AK, Koh CA (2012) Overview of CSMHyK: a transient hydrate formation model. J Pet Sci Eng 98–99:122–129. https://doi.org/10.1016/j.petrol.2012.08.017

    Article  Google Scholar 

  151. Hammerschmidt EG (1934) Formation of gas hydrates in natural gas transmission lines. Ind Eng Chem 1:45–69

    Google Scholar 

  152. Fattah K (2004) Evaluation of empirical correlations for natural gas hydrate predictions. Naft 55:467–472

    Google Scholar 

  153. Buffett BA, Zatsepina OY (2000) Formation of gas hydrate from dissolved gas in natural porous media. Mar Geol 164:69–77. https://doi.org/10.1016/S0025-3227(99)00127-9

    Article  Google Scholar 

  154. Sun ZG, Wang R, Ma R et al (2003) Natural gas storage in hydrates with the presence of promoters. Energy Convers Manag 44:2733–2742. https://doi.org/10.1016/S0196-8904(03)00048-7

    Article  Google Scholar 

  155. Berge BK (1986) Hydrate predictions on a microcomputer. Soc Pet Eng Symp Pet Ind Appl Microcomput PIAM 1986:213–219. https://doi.org/10.2523/15306-ms

    Article  Google Scholar 

  156. JKF (2015) Chapter 13: gas hydrate control. In: Fink J (ed) Petroleum engineer’s guide to oil field chemicals and fluids, 2nd edn. Gulf Professional Publishing, Boston, pp 405–443

    Google Scholar 

  157. Eslamimanesh A, Gharagheizi F, Mohammadi AH, Richon D (2011) Phase equilibrium modeling of structure H clathrate hydrates of methane + water “insoluble” hydrocarbon promoter using QSPR molecular approach. J Chem Eng Data 56:3775–3793. https://doi.org/10.1021/je200444f

    Article  Google Scholar 

  158. Baillie C, Wichert E (1987) Chart gives hydrate formation temperature for natural gas

  159. Maeda N, Wells D, Becker NC et al (2011) Development of a high pressure automated lag time apparatus for experimental studies and statistical analyses of nucleation and growth of gas hydrates. Rev Sci Instrum. https://doi.org/10.1063/1.3602926

    Article  Google Scholar 

  160. Ameripour S (2005) Prediction of gas-hydrate formation conditions in production and surface facilities prediction of gas-hydrate formation conditions in production and surface facilities. Texas A&M University

    Google Scholar 

  161. Barkan ES, Sheinin DA (1993) A general technique for the calculation of formation conditions of natural gas hydrates. Fluid Phase Equilib 86:111–136. https://doi.org/10.1016/0378-3812(93)87171-V

    Article  Google Scholar 

  162. Ostergaard KK, Tohidi B, Danesh A et al (2000) A general correlation for predicting the hydrate-free zone of reservoir fluids. SPE Prod Facil 15:228–233. https://doi.org/10.2118/66523-PA

    Article  Google Scholar 

  163. Ameripour S, Barrufet M (2009) Improved correlations predict hydrate formation pressures or temperatures for systems with or Without Inhibitors. J Can Pet Technol 48:45–50. https://doi.org/10.2118/09-05-45

    Article  Google Scholar 

  164. Shelander D, Dai J, Bunge G et al (2012) Estimating saturation of gas hydrates using conventional 3D seismic data, Gulf of Mexico joint industry project leg II. Mar Pet Geol 34:96–110. https://doi.org/10.1016/j.marpetgeo.2011.09.006

    Article  Google Scholar 

  165. Ghavipour M, Ghavipour M, Chitsazan M et al (2013) Experimental study of natural gas hydrates and a novel use of neural network to predict hydrate formation conditions. Chem Eng Res Des 91:264–273. https://doi.org/10.1016/j.cherd.2012.08.010

    Article  Google Scholar 

  166. Karamoddin M, Varaminian F (2013) Experimental measurement of phase equilibrium for gas hydrates of refrigerants, and thermodynamic modeling by SRK, VPT and CPA EOSs. J Chem Thermodyn 65:213–219. https://doi.org/10.1016/j.jct.2013.06.001

    Article  Google Scholar 

  167. Seo YJ, Park S, Kang H et al (2016) Isostructural and cage-specific replacement occurring in sII hydrate with external CO2/N2 gas and its implications for natural gas production and CO2 storage. Appl Energy 178:579–586. https://doi.org/10.1016/j.apenergy.2016.06.072

    Article  Google Scholar 

  168. Bahadori A, Vuthaluru HB (2009) A novel correlation for estimation of hydrate forming condition of natural gases. J Nat Gas Chem 18:453–457. https://doi.org/10.1016/S1003-9953(08)60143-7

    Article  Google Scholar 

  169. Vinš V, Jäger A, Span R, Hrubý J (2016) Model for gas hydrates applied to CCS systems part I: parameter study of the van der Waals and Platteeuw model. Fluid Phase Equilib 427:268–281. https://doi.org/10.1016/j.fluid.2016.07.014

    Article  Google Scholar 

  170. Zahedi G, Karami Z, Yaghoobi H (2009) Prediction of hydrate formation temperature by both statistical models and artificial neural network approaches. Energy Convers Manag 50:2052–2059. https://doi.org/10.1016/j.enconman.2009.04.005

    Article  Google Scholar 

  171. Vinš V, Jäger A, Hrubý J, Span R (2017) Model for gas hydrates applied to CCS systems part II: fitting of parameters for models of hydrates of pure gases. Fluid Phase Equilib 435:104–117. https://doi.org/10.1016/j.fluid.2016.12.010

    Article  Google Scholar 

  172. Thakre N, Jana AK (2017) Modeling phase equilibrium with a modified Wong-Sandler mixing rule for natural gas hydrates: experimental validation. Appl Energy 205:749–760. https://doi.org/10.1016/j.apenergy.2017.08.083

    Article  Google Scholar 

  173. Babaee S, Hashemi H, Javanmardi J et al (2012) Thermodynamic model for prediction of phase equilibria of clathrate hydrates of hydrogen with different alkanes, alkenes, alkynes, cycloalkanes or cycloalkene. Fluid Phase Equilib 336:71–78. https://doi.org/10.1016/j.fluid.2012.07.031

    Article  Google Scholar 

  174. Dehaghani AHS, Karami B (2018) A new predictive thermodynamic framework for phase behavior of gas hydrate. Fuel 216:796–809. https://doi.org/10.1016/j.fuel.2017.11.128

    Article  Google Scholar 

  175. Hielscher S, Vinš V, Jäger A et al (2018) A new approach to model mixed hydrates. Fluid Phase Equilib 459:170–185. https://doi.org/10.1016/j.fluid.2017.12.015

    Article  Google Scholar 

  176. Terry DA, Knapp CC (2018) A unified effective medium model for gas hydrates in sediments. Geophysics 83:MR317–MR332. https://doi.org/10.1190/geo2017-0513.1

    Article  Google Scholar 

  177. Hielscher S, Semrau B, Jäger A et al (2019) Modification of a model for mixed hydrates to represent double cage occupancy. Fluid Phase Equilib 490:48–60. https://doi.org/10.1016/j.fluid.2019.02.019

    Article  Google Scholar 

  178. Sai K, Malanchuk Z, Petlovanyi M et al (2019) Research of thermodynamic conditions for gas hydrates formation from methane in the coal mines. Solid State Phenom 291:155–172

    Article  Google Scholar 

  179. Rebai N, Hadjadj A, Benmounah A et al (2019) Prediction of natural gas hydrates formation using a combination of thermodynamic and neural network modeling. J Pet Sci Eng 182:106270. https://doi.org/10.1016/j.petrol.2019.106270

    Article  Google Scholar 

  180. Salufu SO, Nwakwo P (2013) New empirical correlation for predicting hydrate formation conditions. Soc Pet Eng - 37th Niger Annu Int Conf Exhib NAICE 2013 - To Grow Africa’s Oil Gas Prod Required Policy. Funding, Technol, Tech Capab 2:834–850. https://doi.org/10.2118/167571-ms

    Article  Google Scholar 

  181. Joshi AK, Sain K, Pandey L (2019) Gas hydrate saturation and reservoir characterization at sites NGHP-02-17 and NGHP-02-19, Krishna Godavari Basin, eastern margin of India. Mar Pet Geol 108:595–608. https://doi.org/10.1016/j.marpetgeo.2018.06.023

    Article  Google Scholar 

  182. Thakre N, Jana AK (2020) nonmonotonous lattice distortion model for gas hydrates. J Phys Chem A 124:3149–3156. https://doi.org/10.1021/acs.jpca.0c00855

    Article  Google Scholar 

  183. Krishna J, Sayani S, Pedapati SR, Lal B (2020) Phase behavior study on gas hydrates formation in gas dominant multiphase pipelines with crude oil and high: CO2 mixed gas. Sci Rep. https://doi.org/10.1038/s41598-020-71509-6

    Article  Google Scholar 

  184. Hammerschmidt EG (1934) Formation of gas hydrates in natural gas transmission lines. Ind Eng Chem 26:851–855. https://doi.org/10.1021/ie50296a010

    Article  Google Scholar 

  185. Kwak TY, Mansoori GA (1986) Van der Waals mixing rules for cubic equations of state: applications for supercritical fluid extraction modelling. Chem Eng Sci 41:1303

    Article  Google Scholar 

  186. Kamari E, Oyarhossein M (2012) Experimental determination of hydrate phase equilibrium curve for an Iranian sour gas condensate sample. J Nat Gas Sci Eng 9:11–15. https://doi.org/10.1016/j.jngse.2012.05.004

    Article  Google Scholar 

  187. Nazridoust K, Ahmadi G (2007) Computational modeling of methane hydrate dissociation in a sandstone core. Chem Eng Sci 62:6155–6177. https://doi.org/10.1016/j.ces.2007.06.038

    Article  Google Scholar 

  188. Jassim E, Abdi MA, Muzychka Y (2008) A CFD-based model to locate flow restriction induced hydrate deposition in pipelines. Offshore Technol Conf Proc 1:213–229. https://doi.org/10.4043/19190-ms

    Article  Google Scholar 

  189. Balakin BV, Hoffmann AC, Kosinski P et al (2010) Combined CFD/population balance model for gas hydrate particle size prediction in turbulent pipeline flow. AIP Conf Proc 1281:151–154. https://doi.org/10.1063/1.3498074

    Article  Google Scholar 

  190. Qiao Z, Wang Z, Zhang C et al (2012) PVAm–PIP/PS composite membrane with high performance for CO2/N2 separation. AIChE J 59:215–228. https://doi.org/10.1002/aic

    Article  Google Scholar 

  191. Gamwo IK, Liu Y (2010) Mathematical modeling and numerical simulation of methane production in a hydrate reservoir. Ind Eng Chem Res 49:5231–5245. https://doi.org/10.1021/ie901452v

    Article  Google Scholar 

  192. Balakin BV, Hoffmann AC, Kosinski P, Høiland S (2010) Turbulent flow of hydrates in a pipeline of complex configuration. Chem Eng Sci 65:5007–5017. https://doi.org/10.1016/j.ces.2010.06.005

    Article  Google Scholar 

  193. Gant SE, Pursell MR, Lea CJ et al (2011) Flammability of hydrocarbon and carbon dioxide mixtures. Process Saf Environ Prot 89:472–481. https://doi.org/10.1016/j.psep.2011.06.017

    Article  Google Scholar 

  194. Coldrick S, Atkinson GT, Gant SE (2011) Large scale evaporating liquid cascades: an experimental and computational study. Inst Chem Eng Symp Ser 560–569

  195. Balakin BV, Hoffmann AC, Kosinski P (2011) Experimental study and computational fluid dynamics modeling of deposition of hydrate particles in a pipeline with turbulent water flow. Chem Eng Sci 66:755–765. https://doi.org/10.1016/j.ces.2010.11.034

    Article  Google Scholar 

  196. Naseer M, Brandst W (2011) Hydrate formation in natural gas pipelines. WIT Trans Eng Sci 70:261–270. https://doi.org/10.2495/MPF110221

    Article  Google Scholar 

  197. Zhai ZJ, Xue Y, Chen Q (2014) Inverse design methods for indoor ventilation systems using CFD-based multi-objective genetic algorithm. Build Simul 7:661–669. https://doi.org/10.1007/s12273-014-0179-2

    Article  Google Scholar 

  198. Al-Saadi SN, Zhai Z (2015) Systematic evaluation of mathematical methods and numerical schemes for modeling PCM-enhanced building enclosure. Energy Build 92:374–388. https://doi.org/10.1016/j.enbuild.2015.01.044

    Article  Google Scholar 

  199. Gharaibah E, Read A, Scheuerer G (2015) Overview of CFD multiphase flow simulation tools for subsea oil and gas system design, optimization and operation. OTC Bras 2015 Atl From East to West - An Ocean Innov 2291–2306. https://doi.org/10.4043/26326-ms

  200. Liang XF, Pan H, Su YH, Luo ZH (2016) CFD-PBM approach with modified drag model for the gas–liquid flow in a bubble column. Chem Eng Res Des 112:88–102. https://doi.org/10.1016/j.cherd.2016.06.014

    Article  Google Scholar 

  201. Neto ET (2016) A mechanistic computational fluid dynamic CFD model to predict hydrate formation in offshore pipelines. Proc: SPE Annu Tech Conf Exhib 2016-Janua: https://doi.org/10.2118/184491-stu

  202. Balakin B V, Kartushinsky A, Hoffmann AC, Kosinski P (2016) CFD-PBM modelling of agglomeration and deposition in petroleum industry. 9th Int Conf Multiph Flow 5–10. https://doi.org/10.13140/RG.2.1.2534.6160

  203. Sultan RA, Rahman MA, Rushd S et al (2019) Validation of CFD model of multiphase flow through pipeline and annular geometries. Part Sci Technol 37:685–697. https://doi.org/10.1080/02726351.2018.1435594

    Article  Google Scholar 

  204. Yu PY, Sean WY, Yeh RY et al (2017) Direct numerical simulation of methane hydrate dissociation in pore-scale flow by using CFD method. Int J Heat Mass Transf 113:176–183. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.053

    Article  Google Scholar 

  205. Song GC, Li YX, Wang WC et al (2018) Numerical simulation of pipeline hydrate particle agglomeration based on population balance theory. J Nat Gas Sci Eng 51:251–261. https://doi.org/10.1016/j.jngse.2018.01.009

    Article  Google Scholar 

  206. Toja-Silva F, Kono T, Peralta C et al (2018) A review of computational fluid dynamics (CFD) simulations of the wind flow around buildings for urban wind energy exploitation. J Wind Eng Ind Aerodyn 180:66–87. https://doi.org/10.1016/j.jweia.2018.07.010

    Article  Google Scholar 

  207. Raman RK, Dewang Y, Raghuwanshi J (2018) A review on applications of computational fluid dynamics optimization tool box View project. Int J LNCT 2:137–143

    Google Scholar 

  208. Jozian S, Vafajoo L (2018) Mathematical modeling of the gas hydrate formation in a 90 elbow utilizing CFD technique. Chem Eng Trans 70:2167–2172. https://doi.org/10.3303/CET1870362

    Article  Google Scholar 

  209. Song G, Li Y, Wang W et al (2019) Hydrate agglomeration modeling and pipeline hydrate slurry flow behavior simulation. Chin J Chem Eng 27:32–43. https://doi.org/10.1016/j.cjche.2018.04.004

    Article  Google Scholar 

  210. Yang L, Fu H, Liang H et al (2019) Detection of pipeline blockage using lab experiment and computational fluid dynamic simulation. J Pet Sci Eng 183:106421. https://doi.org/10.1016/j.petrol.2019.106421

    Article  Google Scholar 

  211. Aghil M, Ahmad A, Amir A, Izadpanah MJ (2019) Prediction of hydrate formation in Ilam gas refinery pipeline using computational fluid dynamic. J Oil Gas Petrochemical Technol 6:63–81

    Google Scholar 

  212. Chen W, Xu HL, Kong WY, Qiong YF (2020) Study on three-phase flow characteristics of natural gas hydrate pipeline transmission. Ocean Eng 214:107727. https://doi.org/10.1016/j.oceaneng.2020.107727

    Article  Google Scholar 

  213. Wang WC, Wang XY, Li YX et al (2020) Study on the characteristics of natural gas hydrate crystal structures during decomposition process. Fuel 271:117537. https://doi.org/10.1016/j.fuel.2020.117537

    Article  Google Scholar 

  214. Song GC, Li YX, Wang WC, Shi ZZ (2020) Numerical simulation of hydrate particle size distribution and hydrate particle bedding in pipeline flowing systems. J Dispers Sci Technol 41:1051–1064. https://doi.org/10.1080/01932691.2019.1614043

    Article  Google Scholar 

  215. Berrouk AS, Jiang P, Safiyullah F, Basha M (2020) CFD modelling of hydrate slurry flow in a pipeline based on Euler-Euler approach. Prog Comput Fluid Dyn 20:156–168. https://doi.org/10.1504/PCFD.2020.107246

    Article  MathSciNet  Google Scholar 

  216. Song R, Sun S, Liu J, Feng X (2021) Numerical modeling on hydrate formation and evaluating the influencing factors of its heterogeneity in core-scale sandy sediment. J Nat Gas Sci Eng 90:103945. https://doi.org/10.1016/j.jngse.2021.103945

    Article  Google Scholar 

  217. Balakin BV, Lo S, Kosinski P, Hoffmann AC (2016) Modelling agglomeration and deposition of gas hydrates in industrial pipelines with combined CFD-PBM technique. Chem Eng Sci 153:45–57. https://doi.org/10.1016/j.ces.2016.07.010

    Article  Google Scholar 

  218. Naseer M (2012) Three Dimensional investigation of hydrate formation in natural gas pipelines. Montanuniversit¨at Leoben, Austria

  219. Sultan RA (2017) CFD simulation of three phase gas-liquid-solid flow in horizontal pipes. In: Proceedings of the ASME 2017 fluids engineering division summer meeting. pp 1–9

  220. Khan MS, Lal B, Partoon B et al (2016) Experimental evaluation of a novel thermodynamic inhibitor for CH4 and CO2 Hydrates. Proc Eng 148:932–940. https://doi.org/10.1016/j.proeng.2016.06.433

    Article  Google Scholar 

  221. Carroll JJ (2003) Natural gas hydrates: a guide for engineers

  222. Mcleod WR (1978) Prediction and control of natural gas hydrates offshore petroleum conference. J Pet Technol 13:590–594. https://doi.org/10.1098/rsta.2017.0217

    Article  Google Scholar 

  223. Elgibaly AA, Elkamel AM (1998) A new correlation for predicting hydrate formation conditions for various gas mixtures and inhibitors. Fluid Phase Equilib 152:23–42. https://doi.org/10.1016/S0378-3812(98)00368-9

    Article  Google Scholar 

  224. Frostman LM, Przybylinski JL (2001) Successful applications of anti-agglomerant hydrate inhibitors. Proc SPE Int Symp Oilf Chem. https://doi.org/10.2523/65007-MS

    Article  Google Scholar 

  225. Duret E, Sanchez G, Rivero M, Henriot V (2007) Hydrate transport in gas-dominant flows. 139–150

  226. Haghighi H, Chapoy A, Burgess R et al (2009) Phase equilibria for petroleum reservoir fluids containing water and aqueous methanol solutions: Experimental measurements and modelling using the CPA equation of state. Fluid Phase Equilib 278:109–116. https://doi.org/10.1016/j.fluid.2009.01.009

    Article  Google Scholar 

  227. Bahman T, Antonin C, Jinhai Y, et al (2008) Developing hydrate monitoring and early warning systems. In: Proc Offshore Technol Conf 1–8

  228. Rajnauth J, Barrufet M, Falcone G (2010) Potential industry applications using gas hydrate technology. Trinidad Tobago Energy Resour Conf 2010 Energy Resour - Beyond SPE TT 2010 2:965–974

  229. Ripmeester J a, Hosseini SAB, Englezos P, Alavi S (2010) Fundamentals of methane hydrate decomposition. In: Can Unconv Resour Int Pet Conf 1–7

  230. Moeini H, Bonyadi M, Esmaeilzadeh F, Rasoolzadeh A (2018) Experimental study of sodium chloride aqueous solution effect on the kinetic parameters of carbon dioxide hydrate formation in the presence/absence of magnetic field. J Nat Gas Sci Eng 50:231

    Article  Google Scholar 

  231. Yang J, Chapoy A, Mazloum S et al (2012) SPE 143619 a novel technique for monitoring hydrate safety margin. Spe 143619(44):23–26. https://doi.org/10.2118/143619-PA

    Article  Google Scholar 

  232. Shuker MT, Ismail FB (2012) Prediction of solid-vapor-liquid equilibrium in natural gas using ANNs. In: Soc Pet Eng: Int Pet Technol Conf 2012, IPTC 2012 4:7–9

  233. Yang J, Chapoy A, Mazloum S et al (2012) SPE 143619 a novel technique for monitoring hydrate safety margin. Spe 143619:23–26. https://doi.org/10.2118/143619-PA

    Article  Google Scholar 

  234. Zerpa LE, Aman ZM, Joshi S, et al (2012) Predicting hydrate blockages in oil, gas and water-dominated systems. Offshore Technol Conf. https://doi.org/10.4043/23490-MS

  235. Riazi SH, Heydari H, Ahmadpour E et al (2014) Development of novel correlation for prediction of hydrate formation temperature based on intelligent optimization algorithms. J Nat Gas Sci Eng 18:377–384. https://doi.org/10.1016/j.jngse.2014.03.012

    Article  Google Scholar 

  236. Babakhani SM, Bahmani M, Shariati J et al (2015) Comparing the capability of artificial neural network (ANN) and CSMHYD program for predicting of hydrate formation pressure in binary mixtures. J Pet Sci Eng 136:78–87. https://doi.org/10.1016/j.petrol.2015.11.002

    Article  Google Scholar 

  237. Daraboina N, Ripmeester J, Walker VK, Englezos P (2011) Natural gas hydrate formation and decomposition in the presence of kinetic inhibitors. 3. Structural and compositional changes. Energy Fuels 25:4398–4404. https://doi.org/10.1021/ef200814z

    Article  Google Scholar 

  238. Mazloum S, Yang J, Chapoy A, Tohidi B (2011) OTC 22487 a novel technique for optimising hydrate inhibitor injection rates. Offshore Technol Conf 22487:2–8. https://doi.org/10.4043/22487-MS

    Article  Google Scholar 

  239. Wang Y, Koh CA, Dapena JA, Zerpa LE (2018) A transient simulation model to predict hydrate formation rate in both oil- and water-dominated systems in pipelines. J Nat Gas Sci Eng 58:126–134. https://doi.org/10.1016/j.jngse.2018.08.010

    Article  Google Scholar 

  240. Hesami SM, Dehghani M, Kamali Z, Ejraei Bakyani A (2017) Developing a simple-to-use predictive model for prediction of hydrate formation temperature. Int J Ambient Energy 38:380–388. https://doi.org/10.1080/01430750.2015.1100678

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasa Rao Pedapati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayani, J.K.S., Lal, B. & Pedapati, S.R. Comprehensive Review on Various Gas Hydrate Modelling Techniques: Prospects and Challenges. Arch Computat Methods Eng 29, 2171–2207 (2022). https://doi.org/10.1007/s11831-021-09651-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09651-1

Navigation