Skip to main content
Log in

Surface Smoothing Procedures in Computational Contact Mechanics

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This work addresses the problems arising in the finite element simulation of contact problems undergoing large deformation. The frictional contact problem is formulated in the continuum framework, introducing the interface laws for the normal and tangential stress components in the contact area. The variational formulation is presented, considering different methods to enforce the contact constraints. The spatial discretization within the finite element method is applied, as well as the temporal discretization required to solve the three sources of nonlinearities: geometric, material and frictional contact. The discretization of contact surfaces is discussed in detail, including different surface smoothing procedures. This numerical strategy allows to solve the difficulties associated with the discontinuities in the contact surface geometry introduced by finite element discretization, which leads to nonphysical oscillations of the contact force for large sliding problems. The geometrical accuracy of different interpolation methods is evaluated, paying particular attention to the Nagata patch interpolation recently proposed. In this framework, the Node-to-Nagata contact elements are developed using the augmented Lagrangian method to regularize the variational frictional contact problem. The techniques used to search for contact in case of large deformations are discussed, including self-contact phenomena. Several numerical examples are presented, comprising both the contact between deformable and rigid obstacles and the contact between deformable bodies. The results show that the accuracy and robustness of the numerical simulations is improved when the contact surface is smoothed with Nagata patches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65

Similar content being viewed by others

References

  1. Zhong Z-H (1993) Finite element procedures for contact-impact problems. Oxford University Press, Oxford

    Google Scholar 

  2. Kikuchi N, Oden JT (1988) Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  3. Wriggers P (2006) Computational contact mechanics. Springer, Berlin

    Book  MATH  Google Scholar 

  4. Hertz H (1881) Über die Berührung fester elastische Körper. J für die reine und Angew Math 92:156–171. doi:10.1243/PIME_PROC_1982_196_039_02

    MathSciNet  Google Scholar 

  5. Johnson KL (1982) One hundred years of hertz contact. Proc Inst Mech Eng 196:363–378. doi:10.1243/PIME_PROC_1982_196_039_02

    Article  Google Scholar 

  6. Zienkiewicz OC, Taylor RL, Zhu JZ (2013) The finite element method: its basis and fundamentals. Finite Elem Method Basis Fundam. doi:10.1016/B978-1-85617-633-0.00019-8

    MathSciNet  MATH  Google Scholar 

  7. Signorini A (1933) Sopra alcune questioni di elastostatica. Atti della Soc Ital per Prog delle Sci

  8. Campos LT, Oden JT, Kikuchi N (1982) A numerical analysis of a class of contact problems with friction in elastostatics. Comput Methods Appl Mech Eng 34:821–845. doi:10.1016/0045-7825(82)90090-1

    Article  MathSciNet  MATH  Google Scholar 

  9. Wriggers P, Van Vu T, Stein E (1990) Finite element formulation of large deformation impact-contact problems with friction. Comput Struct 37:319–331. doi:10.1016/0045-7949(90)90324-U

    Article  MATH  Google Scholar 

  10. Laursen TA, Simo JC (1993) A continuum-based finite element formulation for the implicit solution of multibody, large deformation-frictional contact problems. Int J Numer Methods Eng 36:3451–3485. doi:10.1002/nme.1620362005

    Article  MathSciNet  MATH  Google Scholar 

  11. Hallquist JO, Goudreau GL, Benson DJ (1985) Sliding interfaces with contact-impact in large-scale Lagrangian computations. Comput Methods Appl Mech Eng 51:107–137. doi:10.1016/0045-7825(85)90030-1

    Article  MathSciNet  MATH  Google Scholar 

  12. Zienkiewicz OC (1995) Origins, milestones and directions of the finite element method—a personal view. Arch Comput Methods Eng 2:1–48. doi:10.1007/BF02736188

    Article  MathSciNet  MATH  Google Scholar 

  13. Wilson EA, Parsons B (1970) Finite element analysis of elastic contact problems using differential displacements. Int J Numer Methods Eng 2:387–395. doi:10.1002/nme.1620020307

    Article  Google Scholar 

  14. Chan SK, Tuba IS (1971) A finite element method for contact problems of solid bodies—Part I. Theory and validation. Int J Mech Sci 13:615–625. doi:10.1016/0020-7403(71)90032-4

    Article  MATH  Google Scholar 

  15. Wriggers P (1995) Finite element algorithms for contact problems. Arch Comput Methods Eng 2:1–49. doi:10.1007/BF02736195

    Article  MathSciNet  Google Scholar 

  16. Mijar AR, Arora JS (2000) Review of formulations for elastostatic frictional contact problems. Struct Multidiscipl Optim 20:167–189. doi:10.1007/s001580050147

    Article  MATH  Google Scholar 

  17. Zavarise G, De Lorenzis L (2009) The node-to-segment algorithm for 2D frictionless contact: classical formulation and special cases. Comput Methods Appl Mech Eng 198:3428–3451. doi:10.1016/j.cma.2009.06.022

    Article  MathSciNet  MATH  Google Scholar 

  18. Taylor R, Papadopoulos P (1991) On a patch test for contact problems in two dimensions. In: Wriggers P, Wagner W (eds) Computer methods nonlinear mechanics. Springer, Berlin, pp 690–702

    Google Scholar 

  19. Laursen TA (2002) Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer, Berlin

    MATH  Google Scholar 

  20. Hansson E, Klarbring A (1990) Rigid contact modelled by CAD surface. Eng Comput 7:344–348. doi:10.1108/eb023821

    Article  Google Scholar 

  21. Heege A, Alart P (1996) A frictional contact element for strongly curved contact problems. Int J Numer Methods Eng 39:165–184. doi:10.1002/(SICI)1097-0207(19960115)39:1<165::AID-NME846>3.0.CO;2-Y

    Article  MathSciNet  MATH  Google Scholar 

  22. Heegaard JH, Curnier A (1996) Geometric properties of 2D and 3D unilateral large slip contact operators. Comput Methods Appl Mech Eng 131:263–286. doi:10.1016/0045-7825(95)00977-9

    Article  MathSciNet  MATH  Google Scholar 

  23. Pietrzak G, Curnier A (1999) Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment. Comput Methods Appl Mech Eng 177:351–381. doi:10.1016/S0168-874X(00)00029-9

    Article  MathSciNet  MATH  Google Scholar 

  24. Padmanabhan V, Laursen TA (2001) A framework for development of surface smoothing procedures in large deformation frictional contact analysis. Finite Elem Anal Des 37:173–198

    Article  MATH  Google Scholar 

  25. Wriggers P, Krstulovic-Opara L, Korelc J (2001) Smooth C1-interpolations for two-dimensional frictional contact problems. Int J Numer Methods Eng 51:1469–1495. doi:10.1002/nme.227

    Article  MathSciNet  MATH  Google Scholar 

  26. Al-Dojayli M, Meguid SA (2002) Accurate modeling of contact using cubic splines. Finite Elem Anal Des 38:337–352. doi:10.1016/S0168-874X(01)00088-9

    Article  MATH  Google Scholar 

  27. Krstulovic-Opara L, Wriggers P, Korelc J (2002) A C1-continuous formulation for 3D finite deformation frictional contact. Comput Mech 29:27–42. doi:10.1007/s00466-002-0317-z

    Article  MathSciNet  MATH  Google Scholar 

  28. Stadler M, Holzapfel GA, Korelc J (2003) Cn continuous modelling of smooth contact surfaces using NURBS and application to 2D problems. Int J Numer Methods Eng 57:2177–2203. doi:10.1002/nme.776

    Article  MATH  Google Scholar 

  29. Puso MA, Laursen TA (2002) A 3D contact smoothing method using Gregory patches. Int J Numer Methods Eng 54:1161–1194. doi:10.1002/nme.466

    Article  MathSciNet  MATH  Google Scholar 

  30. Lengiewicz J, Korelc J, Stupkiewicz S (2011) Automation of finite element formulations for large deformation contact problems. Int J Numer Methods Eng 85:1252–1279. doi:10.1002/nme.3009

    MathSciNet  MATH  Google Scholar 

  31. Corbett CJ, Sauer RA (2014) NURBS-enriched contact finite elements. Comput Methods Appl Mech Eng 275:55–75. doi:10.1016/j.cma.2014.02.019

    Article  MathSciNet  MATH  Google Scholar 

  32. Parisch H, Lübbing C (1997) A formulation of arbitrarily shaped surface elements for three-dimensional large deformation contact with friction. Int J Numer Methods Eng 40:3359–3383. doi:10.1002/(SICI)1097-0207(19970930)40:18<3359::AID-NME217>3.0.CO;2-5

    Article  MathSciNet  MATH  Google Scholar 

  33. Mijar AR, Arora JS (2000) Study of variational inequality and equality formulations for elastostatic frictional contact problems. Arch Comput Methods Eng 7:387–449. doi:10.1007/BF02736213

    Article  MathSciNet  MATH  Google Scholar 

  34. Bonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  35. Laursen TA (1994) The convected description in large deformation frictional contact problems. Int J Solids Struct 31:669–681. doi:10.1016/0020-7683(94)90145-7

    Article  MathSciNet  MATH  Google Scholar 

  36. Klarbring A (1995) Large displacement frictional contact: a continuum framework for finite element discretization. Eur J Mech A Solids 14:237–253

    MathSciNet  MATH  Google Scholar 

  37. Agelet de Saracibar C (1997) A new frictional time integration algorithm for large slip multi-body frictional contact problems. Comput Methods Appl Mech Eng 142:303–334. doi:10.1016/S0045-7825(96)01133-4

    Article  MathSciNet  MATH  Google Scholar 

  38. Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput Methods Appl Mech Eng 92:353–375. doi:10.1016/0045-7825(91)90022-X

    Article  MathSciNet  MATH  Google Scholar 

  39. Heegaard J-H, Curnier A (1993) An augmented Lagrangian method for discrete large-slip contact problems. Int J Numer Methods Eng 36:569–593. doi:10.1002/nme.1620360403

    Article  MathSciNet  MATH  Google Scholar 

  40. Buczkowski R, Kleiber M (2009) Statistical models of rough surfaces for finite element 3D-contact analysis. Arch Comput Methods Eng 16:399–424. doi:10.1007/s11831-009-9037-2

    Article  MathSciNet  MATH  Google Scholar 

  41. Yastrebov VA, Anciaux G, Molinari J-F (2014) The contact of elastic regular wavy surfaces revisited. Tribol Lett 56:171–183. doi:10.1007/s11249-014-0395-z

    Article  Google Scholar 

  42. Simo JC, Laursen TA (1992) An augmented lagrangian treatment of contact problems involving friction. Comput Struct 42:97–116. doi:10.1016/0045-7949(92)90540-G

    Article  MathSciNet  MATH  Google Scholar 

  43. Heege A, Alart P, Oñate E (1995) Numerical modelling and simulation of frictional contact using a generalised coulomb law. Eng Comput 12:641–656. doi:10.1108/02644409510799820

    Article  Google Scholar 

  44. Areias P, Rabczuk T, Queirós de Melo FJM, César de Sá J (2014) Coulomb frictional contact by explicit projection in the cone for finite displacement quasi-static problems. Comput Mech 55:57–72. doi:10.1007/s00466-014-1082-5

    Article  MathSciNet  MATH  Google Scholar 

  45. Oden JT, Pires EB (1984) Algorithms and numerical results for finite element approximations of contact problems with non-classical friction laws. Comput Struct 19:137–147. doi:10.1016/0045-7949(84)90212-8

    Article  Google Scholar 

  46. Hjiaj M, Feng Z-Q, de Saxcé G, Mróz Z (2004) On the modelling of complex anisotropic frictional contact laws. Int J Eng Sci 42:1013–1034. doi:10.1016/j.ijengsci.2003.10.004

    Article  MathSciNet  MATH  Google Scholar 

  47. Persson B (2000) Sliding friction: physical principles and applications. Springer, Berlin

    Book  MATH  Google Scholar 

  48. Refaat MH, Meguid SA (1998) A new strategy for the solution of frictional contact problems. Int J Numer Methods Eng 43:1053–1068. doi:10.1002/(SICI)1097-0207(19981130)43:6<1053::AID-NME460>3.0.CO;2-L

    Article  MATH  Google Scholar 

  49. Agelet de Saracibar C (1998) Numerical analysis of coupled thermomechanical frictional contact problems. Computational model and applications. Arch Comput Methods Eng 5:243–301. doi:10.1007/BF02897875

    Article  MathSciNet  Google Scholar 

  50. Luenberger DG, Ye Y (2008) Linear and nonlinear programming, 3rd edn. doi:10.1007/978-0-387-74503-9

  51. Yastrebov VA (2013) Numerical methods in contact mechanics. Wiley, Hoboken

    Book  MATH  Google Scholar 

  52. Courtney-Pratt JS, Eisner E (1957) The effect of a tangential force on the contact of metallic bodies. Proc R Soc A Math Phys Eng Sci 238:529–550. doi:10.1098/rspa.1957.0016

    Article  Google Scholar 

  53. Hüeber S, Stadler G, Wohlmuth BI (2008) A primal-dual active set algorithm for three-dimensional contact problems with coulomb friction. SIAM J Sci Comput 30:572–596. doi:10.1137/060671061

    Article  MathSciNet  MATH  Google Scholar 

  54. Popp A, Gee MW, Wall WA (2009) A finite deformation mortar contact formulation using a primal-dual active set strategy. Int J Numer Methods Eng 79:1354–1391. doi:10.1002/nme.2614

    Article  MathSciNet  MATH  Google Scholar 

  55. Hestenes MR (1969) Multiplier and gradient methods. J Optim Theory Appl 4:303–320. doi:10.1007/BF00927673

    Article  MathSciNet  MATH  Google Scholar 

  56. Powell M (1969) A method for nonlinear constraints in minimization problems. In: Fletcher R (ed) Optimization. Academic Press, New York, pp 283–298

    Google Scholar 

  57. Cavalieri FJ, Cardona A (2015) Numerical solution of frictional contact problems based on a mortar algorithm with an augmented Lagrangian technique. Multibody Syst Dyn. doi:10.1007/s11044-015-9449-8

    MathSciNet  MATH  Google Scholar 

  58. Alart PP (1997) Méthode de Newton généralisée en mécanique du contact. J Math Pures Appl 76:83–108. doi:10.1016/S0021-7824(97)89946-1

    Article  MathSciNet  MATH  Google Scholar 

  59. Mijar AR, Arora JS (2004) An augmented Lagrangian optimization method for contact analysis problems, 1: formulation and algorithm. Struct Multidiscipl Optim 28:99–112. doi:10.1007/s00158-004-0423-y

    MathSciNet  MATH  Google Scholar 

  60. Mijar AR, Arora JS (2004) An augmented Lagrangian optimization method for contact analysis problems, 2: numerical evaluation. Struct Multidiscipl Optim 28:113–126. doi:10.1007/s00158-004-0424-x

    MathSciNet  MATH  Google Scholar 

  61. Yoon J (1999) A general elasto-plastic finite element formulation based on incremental deformation theory for planar anisotropy and its application to sheet metal forming. Int J Plast 15:35–67. doi:10.1016/S0749-6419(98)00059-X

    Article  MATH  Google Scholar 

  62. Cardoso RPR, Yoon J-W (2005) One point quadrature shell elements for sheet metal forming analysis. Arch Comput Methods Eng 12:3–66. doi:10.1007/BF02736172

    Article  MATH  Google Scholar 

  63. Tekkaya AE, Martins PAF (2009) Accuracy, reliability and validity of finite element analysis in metal forming: a user’s perspective. Eng Comput 26:1026–1055. doi:10.1108/02644400910996880

    Article  MATH  Google Scholar 

  64. Alart P, Lebon F (1995) Solution of frictional contact problems using ILU and coarse/fine preconditioners. Comput Mech 16:98–105. doi:10.1007/BF00365863

    Article  MATH  Google Scholar 

  65. Saad Y (2003) Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  66. Schenk O, Gärtner K (2004) Solving unsymmetric sparse systems of linear equations with PARDISO. Future Gener Comput Syst 20:475–487. doi:10.1016/j.future.2003.07.011

    Article  MATH  Google Scholar 

  67. Gould NIM, Scott JA, Hu Y (2007) A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations. ACM Trans Math Softw 33:10-es. doi:10.1145/1236463.1236465

    Article  MathSciNet  Google Scholar 

  68. Chow E, Saad Y (1997) Experimental study of ILU preconditioners for indefinite matrices. J Comput Appl Math 86:387–414. doi:10.1016/S0377-0427(97)00171-4

    Article  MathSciNet  MATH  Google Scholar 

  69. Menezes LF, Neto DM, Oliveira MC, Alves JL (2011) Improving computational performance through HPC techniques: case study using DD3IMP in-house code. AIP Conf Proc 1353:1220–1225. doi:10.1063/1.3589683

    Article  Google Scholar 

  70. Intel (2014) Intel math kernel library reference manual

  71. Crisfield MA (2000) Re-visiting the contact patch test. Int J Numer Methods Eng 48:435–449. doi:10.1002/(SICI)1097-0207(20000530)48:3<435::AID-NME891>3.0.CO;2-V

    Article  MATH  Google Scholar 

  72. Santos A, Makinouchi A (1995) Contact strategies to deal with different tool descriptions in static explicit FEM for 3-D sheet-metal forming simulation. J Mater Process Technol 50:277–291. doi:10.1016/0924-0136(94)01391-D

    Article  Google Scholar 

  73. Hachani M, Fourment L (2013) A smoothing procedure based on quasi-C1 interpolation for 3D contact mechanics with applications to metal forming. Comput Struct 128:1–13. doi:10.1016/j.compstruc.2013.05.008

    Article  Google Scholar 

  74. Hama T, Nagata T, Teodosiu C et al (2008) Finite-element simulation of springback in sheet metal forming using local interpolation for tool surfaces. Int J Mech Sci 50:175–192. doi:10.1016/j.ijmecsci.2007.07.005

    Article  MATH  Google Scholar 

  75. Shim H, Suh E (2000) Contact treatment algorithm for the trimmed NURBS surface. J Mater Process Technol 104:200–206. doi:10.1016/S0924-0136(00)00555-0

    Article  Google Scholar 

  76. Landon RL, Hast MW, Piazza SJ (2009) Robust contact modeling using trimmed NURBS surfaces for dynamic simulations of articular contact. Comput Methods Appl Mech Eng 198:2339–2346. doi:10.1016/j.cma.2009.02.022

    Article  MATH  Google Scholar 

  77. Wang SP, Nakamachi E (1997) The inside-outside contact search algorithm for finite element analysis. Int J Numer Methods Eng 40:3665–3685. doi:10.1002/(SICI)1097-0207(19971015)40:19<3665::AID-NME234>3.0.CO;2-K

    Article  MathSciNet  MATH  Google Scholar 

  78. Farouki RT (1999) Closing the gap between cad model and downstream application. SIAM News 32:303–319

    Google Scholar 

  79. Zhu X-F, Hu P, Ma Z-D et al (2013) A new surface parameterization method based on one-step inverse forming for isogeometric analysis-suited geometry. Int J Adv Manuf Technol 65:1215–1227. doi:10.1007/s00170-012-4251-8

    Article  Google Scholar 

  80. Chamoret D, Saillard P, Rassineux A, Bergheau J-M (2004) New smoothing procedures in contact mechanics. J Comput Appl Math 168:107–116. doi:10.1016/j.cam.2003.06.007

    Article  MathSciNet  MATH  Google Scholar 

  81. Belytschko T, Daniel WJT, Ventura G (2002) A monolithic smoothing-gap algorithm for contact-impact based on the signed distance function. Int J Numer Methods Eng 55:101–125. doi:10.1002/nme.568

    Article  MathSciNet  MATH  Google Scholar 

  82. Francavilla A, Zienkiewicz OC (1975) A note on numerical computation of elastic contact problems. Int J Numer Methods Eng 9:913–924. doi:10.1002/nme.1620090410

    Article  Google Scholar 

  83. Jin S, Sohn D, Lim JH, Im S (2015) A node-to-node scheme with the aid of variable-node elements for elasto-plastic contact analysis. Int J Numer Methods Eng 102:1761–1783. doi:10.1002/nme.4862

    Article  MathSciNet  MATH  Google Scholar 

  84. Simo JC, Wriggers P, Taylor RL (1985) A perturbed Lagrangian formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 50:163–180. doi:10.1016/0045-7825(85)90088-X

    Article  MathSciNet  MATH  Google Scholar 

  85. Sauer RA, De Lorenzis L (2015) An unbiased computational contact formulation for 3D friction. Int J Numer Methods Eng 101:251–280. doi:10.1002/nme.4794

    Article  MathSciNet  MATH  Google Scholar 

  86. Zavarise G, De Lorenzis L (2009) A modified node-to-segment algorithm passing the contact patch test. Int J Numer Methods Eng 79:379–416. doi:10.1002/nme.2559

    Article  MATH  Google Scholar 

  87. Puso MA, Laursen TA (2004) A mortar segment-to-segment frictional contact method for large deformations. Comput Methods Appl Mech Eng 193:4891–4913. doi:10.1016/j.cma.2004.06.001

    Article  MathSciNet  MATH  Google Scholar 

  88. El-Abbasi N, Bathe K-J (2001) Stability and patch test performance of contact discretizations and a new solution algorithm. Comput Struct 79:1473–1486. doi:10.1016/S0045-7949(01)00048-7

    Article  Google Scholar 

  89. Zavarise G, Wriggers P (1998) A segment-to-segment contact strategy. Math Comput Model 28:497–515. doi:10.1016/S0895-7177(98)00138-1

    Article  MATH  Google Scholar 

  90. Bernardi C, Debit N, Maday Y (1990) Coupling finite element and spectral methods: first results. Math Comput 54:21–39. doi:10.1090/S0025-5718-1990-0995205-7

    Article  MathSciNet  MATH  Google Scholar 

  91. Wohlmuth BI (2001) Discretization methods and iterative solvers based on domain decomposition. doi:10.1007/978-3-642-56767-4

  92. Belgacem FB, Hild P, Laborde P (1998) The mortar finite element method for contact problems. Math Comput Model 28:263–271. doi:10.1016/S0895-7177(98)00121-6

    Article  MathSciNet  MATH  Google Scholar 

  93. McDevitt TW, Laursen TA (2000) A mortar-finite element formulation for frictional contact problems. Int J Numer Methods Eng 48:1525–1547. doi:10.1002/1097-0207(20000810)48:10<1525::AID-NME953>3.0.CO;2-Y

    Article  MathSciNet  MATH  Google Scholar 

  94. Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193:601–629. doi:10.1016/j.cma.2003.10.010

    Article  MathSciNet  MATH  Google Scholar 

  95. Yang B, Laursen TA (2008) A large deformation mortar formulation of self contact with finite sliding. Comput Methods Appl Mech Eng 197:756–772. doi:10.1016/j.cma.2007.09.004

    Article  MathSciNet  MATH  Google Scholar 

  96. Puso MA, Laursen TA, Solberg J (2008) A segment-to-segment mortar contact method for quadratic elements and large deformations. Comput Methods Appl Mech Eng 197:555–566. doi:10.1016/j.cma.2007.08.009

    Article  MathSciNet  MATH  Google Scholar 

  97. Laursen TA, Puso MA, Sanders J (2012) Mortar contact formulations for deformable–deformable contact: past contributions and new extensions for enriched and embedded interface formulations. Comput Methods Appl Mech Eng 205–208:3–15. doi:10.1016/j.cma.2010.09.006

    Article  MathSciNet  MATH  Google Scholar 

  98. Farah P, Popp A, Wall WA (2014) Segment-based vs. element-based integration for mortar methods in computational contact mechanics. Comput Mech 55:209–228. doi:10.1007/s00466-014-1093-2

    Article  MathSciNet  MATH  Google Scholar 

  99. Wohlmuth BI (2000) A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J Numer Anal 38:989–1012. doi:10.1137/S0036142999350929

    Article  MathSciNet  MATH  Google Scholar 

  100. Christensen PW, Klarbring A, Pang JS, Strömberg N (1998) Formulation and comparison of algorithms for frictional contact problems. Int J Numer Methods Eng 42:145–173. doi:10.1002/(SICI)1097-0207(19980515)42::1<145:AID-NME358>3.0.CO;2-L

    Article  MathSciNet  MATH  Google Scholar 

  101. Batailly A, Magnain B, Chevaugeon N (2012) A comparative study between two smoothing strategies for the simulation of contact with large sliding. Comput Mech 51:581–601. doi:10.1007/s00466-012-0737-3

    Article  MathSciNet  MATH  Google Scholar 

  102. El-Abbasi N, Meguid SA, Czekanski A (2001) On the modelling of smooth contact surfaces using cubic splines. Int J Numer Methods Eng 50:953–967. doi:10.1002/1097-0207(20010210)50:4<953::AID-NME64>3.0.CO;2-P

    Article  MATH  Google Scholar 

  103. Stadler M, Holzapfel GA (2004) Subdivision schemes for smooth contact surfaces of arbitrary mesh topology in 3D. Int J Numer Methods Eng 60:1161–1195. doi:10.1002/nme.1001

    Article  MathSciNet  MATH  Google Scholar 

  104. Qian X, Yuan H, Zhou M, Zhang B (2014) A general 3D contact smoothing method based on radial point interpolation. J Comput Appl Math 257:1–13. doi:10.1016/j.cam.2013.08.014

    Article  MathSciNet  MATH  Google Scholar 

  105. Farin G (2002) Curves and surfaces for CAGD. Curves Surf CAGD. doi:10.1016/B978-1-55860-737-8.50030-2

    MathSciNet  Google Scholar 

  106. Piegl L, Tiller W (1997) The NURBS book. doi:10.1007/978-3-642-59223-2

  107. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195. doi:10.1016/j.cma.2004.10.008

    Article  MathSciNet  MATH  Google Scholar 

  108. De Lorenzis L, Wriggers P, Hughes TJR (2014) Isogeometric contact: a review. GAMM Mitt 37:85–123. doi:10.1002/gamm.201410005

    Article  MathSciNet  MATH  Google Scholar 

  109. Piegl L (1991) On NURBS: a survey. IEEE Comput Graph Appl 11:55–71. doi:10.1109/38.67702

    Article  Google Scholar 

  110. Cox MG (1972) The numerical evaluation of B-splines. IMA J Appl Math 10:134–149. doi:10.1093/imamat/10.2.134

    Article  MathSciNet  MATH  Google Scholar 

  111. De Boor C (1972) On calculating with B-splines. J Approx Theory 6:50–62. doi:10.1016/0021-9045(72)90080-9

    Article  MathSciNet  MATH  Google Scholar 

  112. Nagata T (2005) Simple local interpolation of surfaces using normal vectors. Comput Aided Geom Des 22:327–347. doi:10.1016/j.cagd.2005.01.004

    Article  MathSciNet  MATH  Google Scholar 

  113. Neto DM, Oliveira MC, Menezes LF, Alves JL (2014) Applying Nagata patches to smooth discretized surfaces used in 3D frictional contact problems. Comput Methods Appl Mech Eng 271:296–320. doi:10.1016/j.cma.2013.12.008

    Article  MathSciNet  MATH  Google Scholar 

  114. Sekine T, Obikawa T (2010) Normal-unit-vector-based tool path generation using a modified local interpolation for ball-end milling. J Adv Mech Des Syst Manuf 4:1246–1260. doi:10.1299/jamdsm.4.1246

    Google Scholar 

  115. Boschiroli M, Fünfzig C, Romani L, Albrecht G (2011) A comparison of local parametric C0 Bézier interpolants for triangular meshes. Comput Graph 35:20–34. doi:10.1016/j.cag.2010.09.011

    Article  Google Scholar 

  116. Neto DM, Oliveira MC, Menezes LF, Alves JL (2013) Improving Nagata patch interpolation applied for tool surface description in sheet metal forming simulation. Comput Aided Des 45:639–656. doi:10.1016/j.cad.2012.10.046

    Article  MathSciNet  Google Scholar 

  117. Neto DM, Oliveira MC, Menezes LF, Alves JL (2013) Nagata patch interpolation using surface normal vectors evaluated from the IGES file. Finite Elem Anal Des 72:35–46. doi:10.1016/j.finel.2013.03.004

    Article  Google Scholar 

  118. IGES (1996) Initial graphics exchange specification, IGES 5.3. IGES/PDES Organization

  119. Todd PH, McLeod RJY (1986) Numerical estimation of the curvature of surfaces. Comput Des 18:33–37. doi:10.1016/S0010-4485(86)80008-2

    Google Scholar 

  120. Meek DS, Walton DJ (2000) On surface normal and Gaussian curvature approximations given data sampled from a smooth surface. Comput Aided Geom Des 17:521–543. doi:10.1016/S0167-8396(00)00006-6

    Article  MathSciNet  MATH  Google Scholar 

  121. OuYang D, Feng H-Y (2005) On the normal vector estimation for point cloud data from smooth surfaces. Comput Des 37:1071–1079. doi:10.1016/j.cad.2004.11.005

    Google Scholar 

  122. Page DL, Sun Y, Koschan AF et al (2002) Normal vector voting: crease detection and curvature estimation on large, noisy meshes. Graph Models 64:199–229. doi:10.1006/gmod.2002.0574

    Article  MATH  Google Scholar 

  123. Jin S, Lewis RR, West D (2005) A comparison of algorithms for vertex normal computation. Vis Comput 21:71–82. doi:10.1007/s00371-004-0271-1

    Article  Google Scholar 

  124. Ubach P-A, Estruch C, Garcia-Espinosa J (2013) On the interpolation of normal vectors for triangle meshes. Int J Numer Methods Eng 96:247–268. doi:10.1002/nme.4567

    MathSciNet  MATH  Google Scholar 

  125. Neto DM, Oliveira MC, Menezes LF, Alves JL (2016) A contact smoothing method for arbitrary surface meshes using Nagata patches. Comput Methods Appl Mech Eng. doi:10.1016/j.cma.2015.11.011

    MathSciNet  Google Scholar 

  126. Lin J, Ball AA, Zheng JJ (2001) Approximating circular arcs by Bézier curves and its application to modelling tooling for FE forming simulations. Int J Mach Tools Manuf 41:703–717. doi:10.1016/S0890-6955(00)00100-0

    Article  Google Scholar 

  127. Kamran K, Rossi R, Oñate E (2012) A contact algorithm for shell problems via Delaunay-based meshing of the contact domain. Comput Mech 52:1–16. doi:10.1007/s00466-012-0791-x

    Article  MATH  Google Scholar 

  128. Yang B, Laursen TA (2008) A contact searching algorithm including bounding volume trees applied to finite sliding mortar formulations. Comput Mech 41:189–205. doi:10.1007/s00466-006-0116-z

    Article  MathSciNet  MATH  Google Scholar 

  129. Aragón AM, Yastrebov VA, Molinari J-F (2013) A constrained-optimization methodology for the detection phase in contact mechanics simulations. Int J Numer Methods Eng 96:323–338. doi:10.1002/nme.4561

    MathSciNet  MATH  Google Scholar 

  130. Areias PMA, César de Sá JMA, Conceição António CA (2004) Algorithms for the analysis of 3D finite strain contact problems. Int J Numer Methods Eng 61:1107–1151. doi:10.1002/nme.1104

    Article  MathSciNet  MATH  Google Scholar 

  131. Zhi-Hua Z, Nilsson L (1989) A contact searching algorithm for general contact problems. Comput Struct 33:197–209. doi:10.1016/0045-7949(89)90141-7

    Article  MATH  Google Scholar 

  132. Benson DJ, Hallquist JO (1990) A single surface contact algorithm for the post-buckling analysis of shell structures. Comput Methods Appl Mech Eng 78:141–163. doi:10.1016/0045-7825(90)90098-7

    Article  MathSciNet  MATH  Google Scholar 

  133. Oldenburg M, Nilsson L (1994) The position code algorithm for contact searching. Int J Numer Methods Eng 37:359–386. doi:10.1002/nme.1620370302

    Article  MATH  Google Scholar 

  134. Fujun W, Jiangang C, Zhenhan Y (2000) A contact searching algorithm for contact-impact problems. Acta Mech Sin 16:374–382. doi:10.1007/BF02487690

    Article  Google Scholar 

  135. Konyukhov A, Schweizerhof K (2008) On the solvability of closest point projection procedures in contact analysis: analysis and solution strategy for surfaces of arbitrary geometry. Comput Methods Appl Mech Eng 197:3045–3056. doi:10.1016/j.cma.2008.02.009

    Article  MathSciNet  MATH  Google Scholar 

  136. Belytschko T, Neal MO (1991) Contact-impact by the pinball algorithm with penalty and Lagrangian methods. Int J Numer Methods Eng 31:547–572. doi:10.1002/nme.1620310309

    Article  MATH  Google Scholar 

  137. Konyukhov A, Schweizerhof K (2005) Covariant description for frictional contact problems. Comput Mech 35:190–213. doi:10.1007/s00466-004-0616-7

    Article  MATH  Google Scholar 

  138. Parisch H (1989) A consistent tangent stiffness matrix for three-dimensional non-linear contact analysis. Int J Numer Methods Eng 28:1803–1812. doi:10.1002/nme.1620280807

    Article  MATH  Google Scholar 

  139. Klarbring A, Bjöourkman G (1992) Solution of large displacement contact problems with friction using Newton’s method for generalized equations. Int J Numer Methods Eng 34:249–269. doi:10.1002/nme.1620340116

    Article  MATH  Google Scholar 

  140. Laursen TA, Maker BN (1995) An augmented Lagrangian quasi-Newton solver for constrained nonlinear finite element applications. Int J Numer Methods Eng 38:3571–3590. doi:10.1002/nme.1620382103

    Article  MATH  Google Scholar 

  141. Renard Y (2013) Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity. Comput Methods Appl Mech Eng 256:38–55. doi:10.1016/j.cma.2012.12.008

    Article  MathSciNet  Google Scholar 

  142. Alart P, Heege A (1995) Consistent tangent matrices of curved contact operators involving anisotropic friction. Rev Eur des Éléments Finis 4:183–207. doi:10.1080/12506559.1995.10511173

    Article  MathSciNet  MATH  Google Scholar 

  143. Menezes LF, Teodosiu C (2000) Three-dimensional numerical simulation of the deep-drawing process using solid finite elements. J Mater Process Technol 97:100–106. doi:10.1016/S0924-0136(99)00345-3

    Article  Google Scholar 

  144. Oliveira MC, Alves JL, Menezes LF (2008) Algorithms and strategies for treatment of large deformation frictional contact in the numerical simulation of deep drawing process. Arch Comput Methods Eng 15:113–162. doi:10.1007/s11831-008-9018-x

    Article  MathSciNet  MATH  Google Scholar 

  145. Oliveira MC, Alves JL, Chaparro B, Menezes LF (2007) Study on the influence of work-hardening modeling in springback prediction. Int J Plast 23:516–543. doi:10.1016/j.ijplas.2006.07.003

    Article  MATH  Google Scholar 

  146. Yamada Y, Yoshimura N, Sakurai T (1968) Plastic stress-strain matrix and its application for the solution of elastic-plastic problems by the finite element method. Int J Mech Sci 10:343–354. doi:10.1016/0020-7403(68)90001-5

    Article  MATH  Google Scholar 

  147. Tur M, Fuenmayor FJ, Wriggers P (2009) A mortar-based frictional contact formulation for large deformations using Lagrange multipliers. Comput Methods Appl Mech Eng 198:2860–2873. doi:10.1016/j.cma.2009.04.007

    Article  MathSciNet  MATH  Google Scholar 

  148. NUMISHEET’93 (1993) Proceedings of the 2nd international conference numerical simulation of 3-D sheet metal forming processes

  149. Neto DM, Oliveira MC, Alves JL, Menezes LF (2015) Comparing faceted and smoothed tool surface descriptions in sheet metal forming simulation. Int J Mater Form 8:549–565. doi:10.1007/s12289-014-1177-8

    Article  Google Scholar 

  150. Oliveira MC, Menezes LF (2004) Automatic correction of the time step in implicit simulations of the stamping process. Finite Elem Anal Des 40:1995–2010. doi:10.1016/j.finel.2004.01.009

    Article  Google Scholar 

  151. Klang M (1979) On interior contact under friction between cylindrical elastic bodies. Linköping University, Linköping

    Google Scholar 

  152. Hammer ME (2012) Frictional mortar contact for finite deformation problems with synthetic contact kinematics. Comput Mech 51:975–998. doi:10.1007/s00466-012-0780-0

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Portuguese Foundation for Science and Technology (FCT) via the project PTDC/EMS-TEC/1805/2012. The first author is also grateful to the FCT for the postdoctoral Grant SFRH/BPD/101334/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Neto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neto, D.M., Oliveira, M.C. & Menezes, L.F. Surface Smoothing Procedures in Computational Contact Mechanics. Arch Computat Methods Eng 24, 37–87 (2017). https://doi.org/10.1007/s11831-015-9159-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-015-9159-7

Navigation