Skip to main content
Log in

Host plant-mediated reaction norms in the European grapevine moth: evidence for evolutionary host shift from daphne to vine

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

It is widely assumed that in the late nineteenth century Lobesia botrana Den. and Schiff. shifted its food source from a wild shrub (Daphne gnidium L.) to vine (Vitis vinifera L.). We explored if host range expansion reflects an evolutionary host shift, whereby the new moth-host association was linked to adaptive changes. The reaction norms of larval survival, adult weight and development time were investigated in L. botrana under field conditions. Two moth strains were established from vine and daphne, and reciprocal infestations with neonate larvae were performed on both host plants over the three larval generations. All three traits showed phenotypic plasticity and genetic variation, variation for plasticity being only detected in larval survival. Comparisons between hosts within strains showed that (1) larval survival was higher on vine in 9 of 12 cases, (2) adult weight was lower on vine only in the first generation and (3) development time was shorter on vine in first generation, shorter on daphne in third generation and displayed a sex-related response in the second generation. Comparisons between strains within hosts evidenced moth-host adaptation as larval survival increased when strains developed on its original host. There was also evidence of moth-parasitoid coevolution because parasitism level was strain-dependent. We hypothesize that higher larval survival on vine, similar adult weight on both hosts in summer generations and lower predation risk in vineyards, might be among the fitness-related factors explaining evolutionary host shift to and worldwide adaptive success on vine of L. botrana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agosta SJ (2006) On ecological fitting, plant-insect associations, herbivore host shifts, and host plant selection. Oikos 114:556–565

    Article  Google Scholar 

  • Baggiolini M (1952) Les stades repères dans le développement annuel de la vigne et leur utilisation pratique. Rev Romande Agric Vitic Arboric 8:4–6

    Google Scholar 

  • Baillod M, Baggiolini M (1993) Les stades rèperes de la vigne. Rev Suisse Vitic Arboric Hortic 25:7–9

    Google Scholar 

  • Balachowsky AS, Mesnil L (1935–1936) Les insectes nuisibles aux plantes cultivées (2 vol.). Busson-L Méry, Paris

  • Bernays EA, Graham M (1988) On the evolution of host specificity in phytophagous arthropods. Ecology 69:886–892

    Article  Google Scholar 

  • Berrigan D, Charnov EL (1994) Reaction norms for age and size at maturity in response to temperature: a puzzle for life historians. Oikos 70:474–478

    Article  Google Scholar 

  • Bovey P (1966) Super-famille des Tortricoidea. In: Balachowsky AS (ed) Entomologie appliquée à l’agriculture, 2 (1). Masson et Cie, Paris, pp 456–893

    Google Scholar 

  • Coscollá R (1997) La polilla del racimo de la vid (Lobesia botrana Den. y Schiff.). Generalitat Valenciana, Conselleria de Agricultura, Pesca y Alimentación, Paterna (Valencia)

  • Cuní y Martorell M (1874) Catálogo metódico y razonado de los lepidópteros que se encuentran en los alrededores de Barcelona, de los pueblos cercanos y de otros lugares de Cataluña. T. Gorchs, Barcelona

  • Danks HV (2002) Modification of adverse conditions by insects. Oikos 99:10–24

    Article  Google Scholar 

  • Eichhorn KW, Lorenz DH (1977) Phänologische entwicklungsstadien der rebe. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes (Braunschweig) 29:119–120

    Google Scholar 

  • Fermaud M (1998) Cultivar susceptibility of grape berry clusters to larvae of Lobesia botrana (Lepidoptera: Tortricidae). J Econ Entomol 91:974–980

    Google Scholar 

  • Fox CW, Czesak ME (2000) Evolutionary ecology of progeny size in arthropods. Annu Rev Entomol 45:341–369

    Article  PubMed  CAS  Google Scholar 

  • Fusco G, Minelli A (2010) Phenotypic plasticity in development and evolution: facts and concepts. Phil Trans R Soc B 365:547–556

    Article  PubMed  Google Scholar 

  • Gabel B, Roehrich R (1995) Sensitivity of grapevine phenological stages to larvae of European grapevine moth, Lobesia botrana Den. et Schiff. (Lep., Tortricidae). J Appl Entomol 119:127–130

    Article  Google Scholar 

  • Gotthard K (2000) Increased risk of predation as a cost of high growth rate: an experimental test in a butterfly. J Anim Ecol 69:896–902

    Article  Google Scholar 

  • Grassé PP (1928) Eudémis et plantes sauvages. Prog Agric Vitic 90(49):541–544

    Google Scholar 

  • Hanski IA, Gilpin ME (eds) (1997) Metapopulation biology: ecology, genetics, and evolution. Academic Press, London

    Google Scholar 

  • Hunter AF, Elkinton JS (2000) Effects of synchrony with host plant on populations of a spring-feeding lepidopteran. Ecology 81:1248–1261

    Article  Google Scholar 

  • Ioriatti C, Anfora G, Tasin M, De Cristofaro A, Witzgall P, Lucchi A (2011) Chemical ecology and management of Lobesia botrana (Lepidoptera: Tortricidae). J Econ Entomol 104:1125–1137

    Article  PubMed  CAS  Google Scholar 

  • Jermy T (1984) Evolution of insect/host plant relationship. Am Nat 124:609–630

    Article  Google Scholar 

  • Lucchi A, Santini L (2011) Life history of Lobesia botrana on Daphne gnidium in a Natural Park of Tuscany. IOBC 67:197–202

    Google Scholar 

  • Maher N, Thiéry D (2006) Daphne gnidium, a possible native host plant of the European grapevine moth Lobesia botrana, stimulates its oviposition. Is a host shift relevant? Chemoecology 16:135–144

    Article  CAS  Google Scholar 

  • Marchal P (1912) Rapport sur les travaux accomplis par la mission d’étude de la Cochylis et de l’Eudémis pendant l’année 1911. Béranger, Paris

    Google Scholar 

  • Martín-Vertedor D, Ferrero-García JJ, Torres-Vila LM (2010) Global warming affects phenology and voltinism of Lobesia botrana in Spain. Agric Forest Entomol 12:169–176

    Article  Google Scholar 

  • Masante-Roca I, Anton S, Delbac L, Dufour MC, Gadenne C (2007) Attraction of the grapevine moth to host and non-host plant parts in the wind tunnel: effects of plant phenology, sex, and mating status. Entomol Exp Appl 122:239–245

    Article  Google Scholar 

  • Mercader RJ, Scriber JM (2005) Phenotypic plasticity in host selection in adult tiger swallowtail butterflies, Papilio glaucus (Lepidoptera: Papilionidae). In: Ananthakrishnan TN (ed) Insects and phenotypic plasticity. IHB, Oxford, pp 25–57

    Google Scholar 

  • Millière P (1875) Catalogue raisonné des Lépidoptères [du Département] des Alpes-Maritimes [III]. Mém Soc Sci Nat Hist Lett Beaux-Arts Cannes Arrondissement Grasse 5:51–216

    Google Scholar 

  • Mondy N, Corio-Costet MF (2004) Feeding insects with a phytopathogenic fungus influences their diapause and population dynamics. Ecol Entomol 29:711–747

    Article  Google Scholar 

  • Mondy N, Charrier B, Fermaud M, Pracros P, Corio-Costet MF (1998) A mutualism between a phytopathogenic fungus (Botrytis cinerea) and a vineyard pest (Lobesia botrana): positive effects on insect development and oviposition behaviour. Cr Acad Sci Paris, Ser Sci Vie 321:665–671

    Google Scholar 

  • Moreau J, Benrey B, Thiéry D (2006a) Grape variety affects larval performance and also female reproductive performance of the European grapevine moth (Lobesia botrana). Bull Entomol Res 96:205–212

    Article  PubMed  CAS  Google Scholar 

  • Moreau J, Benrey B, Thiéry D (2006b) Assessing larval food quality for phytophagous insects: are the facts as simple as they appear? Funct Ecol 20:592–600

    Article  Google Scholar 

  • Moreau J, Thiéry D, Troussard JT, Benrey B (2007) Grape variety affects female but also male reproductive success in wild European grapevine moths. Ecol Entomol 32:747–753

    Article  Google Scholar 

  • Nuzzaci G, Triggiani O (1982) Note sulla biocenosi in Puglia della Lobesia (Polychrosis) botrana (Schiff.) (Lepidoptera: Tortricidae) infeudata a Daphne gnidium L. Entomologica 17:47–52

    Google Scholar 

  • Nylin S, Gotthard K (1998) Plasticity in life history traits. Annu Rev Entomol 43:63–83

    Article  PubMed  CAS  Google Scholar 

  • Paré PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–331

    Article  PubMed  Google Scholar 

  • Pavan F, Stefanelli G, Cargnus E, Villani A (2009) Assessing the influence of inflorescence traits on the susceptibility of grape to vine moths. J Appl Entomol 133:394–401

    Article  Google Scholar 

  • Pigliucci M (2001) Phenotypic plasticity: beyond nature and nurture. John Hopkins University Press, Baltimore

    Google Scholar 

  • Roehrich R, Boller E (1991) Tortricids in vineyards. In: van der Geest LPS, Evenhuis HH (eds) Tortricids pests their biology, natural enemies and control. Elsevier, Amsterdam, pp 507–514

    Google Scholar 

  • Roehrich R, Carles JP (1981) Observations sur les déplacements de l’Eudémis, Lobesia botrana. Boll Zool Agrar Bach, Ser II 16:10–11

    Google Scholar 

  • Savopoulou-Soultani M, Stavridis DG, Vassiliou A, Stafilidis JE, Iraklidis I (1994) Response of Lobesia botrana (Lepidoptera: Tortricidae) to levels of sugar and protein in artificial diets. J Econ Entomol 87:84–90

    CAS  Google Scholar 

  • Schmitz V, Roehrich R, Stockel J (1996) Dispersal of marked and released adults of Lobesia botrana in an isolated vineyard and the effect of synthetic sex pheromone on their movements. J Int Sci Vigne Vin 30:67–72

    CAS  Google Scholar 

  • Scriber JM, Slansky F (1981) The nutritional ecology of immature insects. Annu Rev Entomol 26:183–211

    Article  Google Scholar 

  • Singer MS, Rodrigues D, Stireman JO III, Carrière Y (2004) Roles of food quality and enemy-free space in host use by a generalist insect herbivore. Ecology 85:2747–2753

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. Freeman and Co, New York

    Google Scholar 

  • Stamp NE, Casey TE (1993) Caterpillars: ecological and evolutionary constraints on foraging. Chapman and Hall, London

    Google Scholar 

  • Stearns SC (1989) The evolutionary significance of phenotypic plasticity. Bioscience 39:436–445

    Article  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Stockel J, Roehrich R, Carles JP, Nadaud A (1989) Technique d’élevage pour l’obtention programmée d’adultes vierges d’Eudémis. Phytoma 412:45–47

    Google Scholar 

  • Stoeva R (1982) Food-plants of the grape moth (Lobesia botrana Schiff.) in Bulgaria [in Bulgarian]. Grad Loz Nauka 19:83–89

    Google Scholar 

  • Systat (2000) Systat 10.0 The system for statistics. System Software Inc, Richmond, California

  • Tasin M, Bäckman AC, Anfora G, Carlin S, Ioriatti C, Witzgall P (2010) Attraction of female grapevine moth to common and specific olfactory cues from two host plants. Chem Senses 35:57–64

    Article  PubMed  Google Scholar 

  • Thiéry D (2005) Les vers de la grappe: les connaître pour s’en protéger. Vignes et Vins International Publications, Bordeaux

    Google Scholar 

  • Thiéry D, Moreau J (2005) Relative performance of European grapevine moth (Lobesia botrana) on grapes and other hosts. Oecologia 143:548–557

    Article  PubMed  Google Scholar 

  • Thompson JN (1988) Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomol Exp Appl 47:3–14

    Article  Google Scholar 

  • Thompson JN (1994) The coevolutionary process. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Torres-Vila LM (1996) Efecto de la temperatura de desarrollo preimaginal sobre el potencial biótico de la polilla del racimo de la vid, Lobesia botrana (Denis y Schiffermüller, [1775]) (Lepidoptera: Tortricidae). SHILAP Revta Lepid 24:197–206

    Google Scholar 

  • Torres-Vila LM (2010) Lobesia botrana Den. and Schiff. (Lepidoptera: Tortricidae). Crop Protection Compendium. CABI Web. http://www.cabi.org/cpc. Accessed 8 September 2011

  • Torres-Vila LM, Rodríguez-Molina MC (2002) Egg size variation and its relationship with larval performance in the Lepidoptera: the case of the European grapevine moth Lobesia botrana. Oikos 99:272–283

    Article  Google Scholar 

  • Torres-Vila LM, Schmitz V, Stockel J (1992) Efecto de la evolución fenológica y de la variedad de vid en la instalación y supervivencia en primera generación de las orugas de la polilla del racimo (Lobesia botrana Den. y Schiff.; Lepidoptera: Tortricidae). Bol San Veg Plagas 18:755–764

    Google Scholar 

  • Torres-Vila LM, Oustry L, Schmitz V, Roehrich R, Stockel J (1993) Acción de la humedad relativa y la fluctuación térmica sobre la crisálida no diapausante de la “polilla del racimo”, Lobesia botrana Den. y Schiff. (Lepidoptera: Tortricidae). Bol San Veg Plagas 19:79–92

    Google Scholar 

  • Torres-Vila LM, Stockel J, Roehrich R (1995) Le potentiel reproducteur et ses variables biotiques associées chez le mâle de l’Eudémis de la vigne Lobesia botrana. Entomol Exp Appl 77:105–119

    Article  Google Scholar 

  • Torres-Vila LM, Stockel J, Roehrich R, Rodríguez-Molina MC (1997) The relation between dispersal and survival of Lobesia botrana larvae and their density in vine inflorescences. Entomol Exp Appl 84:109–114

    Article  Google Scholar 

  • Torres-Vila LM, Rodríguez-Molina MC, Roehrich R, Stockel J (1999) Vine phenological stage during larval feeding affects male and female reproductive output of Lobesia botrana (Lepidoptera: Tortricidae). Bull Entomol Res 89:549–556

    Article  Google Scholar 

  • Torres-Vila LM, McMinn M, Rodríguez-Molina A, Rodríguez-Molina MC (2006) Primera cita de Lobesia botrana Den. et Schiff. (Lepidoptera: Tortricidae) en la isla de Cabrera, Islas Baleares. Boll Soc Hist Nat Balears 49:45–49

    Google Scholar 

  • Torres-Vila LM, Cruces Caldera E, Rodríguez-Molina MC (2012) Host plant selects for egg size in the moth Lobesia botrana: integrating reproductive and ecological trade-offs is not a simple matter. In: Cauterruccio L (ed) Moths: types, ecological significance and control methods. Nova Science Publication, Hauppauge

    Google Scholar 

  • van Asch M, Visser ME (2007) Phenology of forest caterpillars and their host trees: the importance of synchrony. Annu Rev Entomol 52:37–55

    Article  PubMed  Google Scholar 

  • Via S (1984) The quantitative genetics of polyphagy in an insect herbivore. I. Genotype-environment interaction in larval performance on different host plant species. Evolution 38:881–895

    Article  Google Scholar 

  • West SA, Cunningham JP (2002) A general model for host plant selection in phytophagous insects. J Theor Biol 214:499–513

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all members of the Integrated Protection team, E. Cruces Caldera, A. Sánchez González, D. Martín-Vertedor, F. Ponce Escudero, J.J. Ferrero García, and F. Barrena Galán for providing technical assistance in both the laboratory and field. We are very grateful to the owners of the experimental vineyards, M.A. Carranza and E. Silva, for their kind permission to conduct our investigations, and especially to Dr. M. Jennions for his valuable suggestions and for improving the English. We also appreciate the constructive labour of three anonymous reviewers to improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis M. Torres-Vila.

Additional information

Handling Editors: Yvan Rahbe and Heikki Hokkanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres-Vila, L.M., Rodríguez-Molina, M.C. Host plant-mediated reaction norms in the European grapevine moth: evidence for evolutionary host shift from daphne to vine. Arthropod-Plant Interactions 7, 125–136 (2013). https://doi.org/10.1007/s11829-012-9233-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-012-9233-0

Keywords

Navigation