Skip to main content
Log in

Rhizobium etli bacteroids engineered for Vitreoscilla hemoglobin expression alleviate oxidative stress in common bean nodules that reprogramme global gene expression

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

The common bean (Phaseolus vulgaris L.)–Rhizobium etli symbiosis and crop productivity are highly affected by adverse environmental conditions that cause oxidative stress. Based on the improved symbiosis of common bean inoculated with engineered R. etli expressing the Vitreoscilla hemoglobin (VHb) (Ramírez et al., Mol Plant Microbe Interact 12:1008–1015, 1999), in this work we analyzed the effect of this strain in plants exposed to the herbicide paraquat (PQ) which generates oxidative stress. PQ-treated plants inoculated with the engineered (VHb) R. etli strain showed higher nitrogenase activity and ureide content than plants inoculated with the wild type strain. We performed microarray transcriptomic analysis to identify PQ-responsive genes in nodules elicited by engineered vs wild type strains. An evident reprogramming of the transcriptional profile was observed in PQ-treated nodules, and the global changes in gene expression were different between nodules elicited with each strain. The most relevant difference was the increased number of up-regulated PQ-responsive genes in wild type strain nodules as compared to VHb-expressing nodules. The majority of these genes were classified into biological processes/functional categories related to defense, response to abiotic stress or signaling, as revealed by Gene Ontology and MapMan analysis. Taken together our analysis suggests that the expression of VHb in R. etli bacteroids contributes to buffering the damage caused by increased reactive oxygen species, and this is reflected in nodule cells that showed decreased sensitivity to oxidative stress and response of stress-related genes. Biotechnological applications of VHb-expressing rhizobia inoculants could be further explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anand A, Duk BT, Singh S, Akbas MY, Webster DA, Stark BC, Dikshit KL (2010) Redox-mediated interactions of VHb (Vitreoscilla haemoglobin) with OxyR: novel regulation of VHb biosynthesis under oxidative stress. Biochem J 426:271–280. doi:10.1042/BJ20091417

    Article  CAS  PubMed  Google Scholar 

  • Aparicio-Fabre R, Guillén G, Loredo M, Arellano J, Valdés-López O, Ramírez M, Íñiguez LP, Panzeri D, Castiglioni B, Cremonesi P, Strozzi F, Stella A, Girard L, Sparvoli F, Hernández G (2013) Common bean (Phaseolus vulgaris L.) PvTIFY orchestrates global changes in transcript profile response to jasmonate and phosphorus deficiency. BMC Plant Biol 13:1. doi:10.1186/1471-2229-13-26

    Article  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genet 25:25–29. doi:10.1038/75556

    Article  PubMed Central  Google Scholar 

  • Becana M, Matamoros MA, Udvardi M, Dalton DA (2010) Recent insights into antioxidant defenses of legume root nodules. New Phytol 188:960–976. doi:10.1111/j.14698137.2010.03512.x

    Article  CAS  PubMed  Google Scholar 

  • Boldt R, Zrenner R (2003) Purine pyrimidine biosynthesis in higher plants. Physiol Plant 117:297–304

    Article  CAS  PubMed  Google Scholar 

  • Broughton WJ, Hernández G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp): model food legume. Plant Soil 252:55–128. doi:10.1023/A:1024146710611

    Article  CAS  Google Scholar 

  • Brunetti C, Di Ferdinando M, Fini A, Pollastri S, Tattini M (2013) Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans. Int J Mol Sci 14:3540–3555. doi:10.3390/ijms14023540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalton DA, Boniface C, Turner Z, Lindahl A, Kim HJ, Jelinek L, Govindarajulu M, Finger RE, Taylor CG (2009) Physiological roles of glutathione S-transferases in soybean root nodules. Plant Physiol 150:521–530. doi:10.1104/pp.109.136630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danquah A, de Zelicourt A, Colcombet J, Hirt H (2014) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 32:40–52. doi:10.1016/j.biotechadv.2013.09.006

    Article  CAS  PubMed  Google Scholar 

  • Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression hybridization array data repository. Nucleic Acids Res 30:207–210. doi:10.1093/nar/30.1.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ElSayed AI, Rafudeen MS, Golldack D (2014) Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress. Plant Biol 16:1–8. doi:10.1111/plb.12053

    Article  CAS  PubMed  Google Scholar 

  • Ferrer JL, Austin MB, Stewart C Jr, Noel JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46:356–370. doi:10.1016/j.plaphy.2007.12.009

    Article  CAS  PubMed  Google Scholar 

  • Geckil H, Stark BC, Webster DA (2001) Cell growth and oxygen uptake of Escherichia coli and Pseudomonas aeruginosa are differently effected by the genetically engineered Vitreoscilla hemoglobin gene. J Biotechnol 85:57–66. doi:10.1016/S0168-1656(00)00384-9

    Article  CAS  PubMed  Google Scholar 

  • Geckil H, Gencer S, Kahraman H, Erenler SO (2003) Genetic engineering of Enterobacter aerogenes with the Vitreoscilla hemoglobin gene: cell growth, survival, and antioxidant enzyme status under oxidative stress. Res Microbiol 154:425–431. doi:10.1016/S0923-2508(03)00083-4

    Article  CAS  PubMed  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877. doi:10.1104/pp.017004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granados-Baeza MJ, Gómez-Hernández N, Mora Y, Delgado MJ, Romero D, Girard L (2007) Novel reiterated Fnr-type proteins control the production of the symbiotic terminal oxidase cbb 3 in Rhizobium etli CFN42. Mol Plant Microbe Interact 20:1241–1249. doi:10.1094/MPMI-20-10-1241

    Article  CAS  PubMed  Google Scholar 

  • Hardison R (1998) Hemoglobins from bacteria to man: evolution of different patterns of gene expression. J Exp Biol 201:1099–1117

    CAS  PubMed  Google Scholar 

  • Hardy RW, Holsten RD, Jackson EK, Burns RC (1968) The acetylene–ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43:1185–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández G, Ramírez M, Valdes-López O, Tesfaye M, Graham MA, Czechowski T, Schlereth A, Wandrey M, Erban A, Cheung F, Wu H, Lara M, Town CD, Kopka J, Udvardi MK, Vance CP (2007) Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiol 144:752–767. doi:10.1104/pp.107.096958

    Article  PubMed  PubMed Central  Google Scholar 

  • Holmberg N, Lilius G, Bailey JE, Bülow L (1997) Transgenic tobacco expressing Vitreoscilla hemoglobin exhibits enhanced growth and altered metabolite production. Nat Biotechnol 15:244–247. doi:10.1038/nbt0397-244

    Article  CAS  PubMed  Google Scholar 

  • Joshi M, Mande S, Dikshi KL (1998) Hemoglobin biosynthesis in Vitreoscilla stercoraria DW: cloning, expression, and characterization of a new homolog of a bacterial globin gene. Appl Environ Microbiol 64:2220–2228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur R, Pathania R, Sharma V, Mande SC, Dikshit KL (2002) Chimeric Vitreoscilla hemoglobin (VHb) carrying a flavoreductase domain relieves nitrosative stress in Escherichia coli: new insight into the functional role of VHb. Appl Environ Microbiol 68:152–160. doi:10.1128/AEM.68.1.152-160.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khosla C, Bailey JE (1988) Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature 18:633–635. doi:10.1038/331633a0

    Article  Google Scholar 

  • Klie S, Nikoloski Z (2012) The choice between MapMan and Gene Ontology for automated gene function prediction in plant science. Front Genet 3:115. doi:10.3389/fgene.2012.00115

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Peng RH, Fan HQ, Xiong AS, Yao QH, Cheng ZM (2005) Vitreoscilla hemoglobin overexpression increases submergence tolerance in cabbage. Plant Cell Rep 23:710–715. doi:10.1186/s12870-016-0728-1

    Article  CAS  PubMed  Google Scholar 

  • Malhotra S, Sowdhamini R (2014) Interactions among plant transcription factors regulating expression of stress-responsive genes. Bioinform Biol Insights 8:193–198. doi:10.4137/BBI.S16313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandon K, Pauly N, Boscari A, Brouquisse R, Frendo P, Demple B, Puppo A (2009) ROS in the legume-Rhizobium symbiosis. In: Del Río LA, Puppo A (eds) Reactive oxygen species in plant signaling. Springer, Berlin, pp 135–147

    Chapter  Google Scholar 

  • Mendoza-Soto AB, Naya L, Leija A, Hernández G (2015) Responses of symbiotic nitrogen-fixing common bean to aluminum toxicity and delineation of nodule responsive microRNAs. Front Plant Sci 6. doi:10.3389/fpls.2015.00587

  • Moon S, Jung KH (2014) Genome-wide expression analysis of rice ABC transporter family across spatio-temporal samples and in response to abiotic stresses. J Plant Physiol 171:1276–1288. doi:10.1016/j.jplph.2014.05.006

    Article  PubMed  Google Scholar 

  • Naya L, Paul S, Valdés-López O, Mendoza-Soto AB, Nova-Franco B, Sosa-Valencia G, Reyes JL, Hernández G (2014) Regulation of copper homeostasis and biotic interactions by microRNA 398b in common bean. PLoS One 9:e84416. doi:10.1371/journal.pone.0084416

    Article  PubMed  PubMed Central  Google Scholar 

  • Peralta H, Mora Y, Salazar E, Encarnación S, Palacios R, Mora J (2004) Engineering the nifH promoter region and abolishing poly-β-hydroxybutyrate accumulation in Rhizobium etli enhance nitrogen fixation in symbiosis with Phaseolus vulgaris. Appl Environ Microbiol 70:3272–3281. doi:10.1128/AEM.70.6.3272-3281.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peshev D, Vergauwen R, Moglia A, Hideg É, Van den Ende W (2013) Towards understanding vacuolar antioxidant mechanisms: a role for fructans? J Exp Bot 64:1025–1038. doi:10.1093/jxb/ers377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521. doi:10.1146/annurev-cellbio-092910-154055

    Article  CAS  PubMed  Google Scholar 

  • Ramírez M, Valderrama B, Arrendondo-Peter R, Sobéron M, Mora J, Hernández G (1999) Rhizobium etli genetically engineered for the heterologous expression of Vitreoscilla sp. hemoglobin: effect on free-living symbiosis. Mol Plant Microbe Interact 12:1008–1015. doi:10.1094/MPMI.1999.12.11.1008

    Article  Google Scholar 

  • Ramírez M, Guillén G, Fuentes SI, Iñiguez LP, Aparicio-Fabre R, Zamorano-Sánchez D, Encarnación-Guevara S, Panzeri D, Castiglioni B, Cremonesi P, Strozzi F, Stella A, Girard L, Sparvoli F, Hernández G (2013) Transcript profiling of common bean nodules subjected to oxidative stress. Physiol Plant 149:389–407. doi:10.1111/ppl.12040

    PubMed  Google Scholar 

  • Routledge R (1998) Fisher’s exact test. In: Armitage P, Colton T (eds) Encyclopedia of biostatistics, vol 2. Wiley, New York, pp 1519–1523

    Google Scholar 

  • Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, Jenkins J, Shu S, Song Q, Chavarro C, Torres-Torres M, Geffroy V, Moghaddam SM, Gao D, Abernathy B, Barry K, Blair M, Brick MA, Chovatia M, Gepts P, Goodstein DM, Gonzales M, Hellsten U, Hyten DL, Jia G, Kelly JD, Kudrna D, Lee R, Richard MM, Miklas PN, Osorno JM, Rodrigues J, Thareau V, Urrea CA, Wang M, Yu Y, Zhang M, Wing RA, Cregan PB, Rokhsar DS, Jackson SA (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707–713. doi:10.1038/ng.3008

    Article  CAS  PubMed  Google Scholar 

  • Segovia L, Young JPW, Martínez-Romero E (1993) Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int J Syst Evol Microbiol 43:374–377. doi:10.1099/00207713-43-2-374

    CAS  Google Scholar 

  • Smyth GK (2004) Linear models empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:1–26

    Google Scholar 

  • Soberón M, López O, Morera C, Girard ML, Tabche M, Miranda J (1999) Enhanced nitrogen fixation in a Rhizobium etli ntrC mutant that overproduces the Bradyrhizobium japonicum symbiotic terminal oxidase cbb 3 . Appl Environ Microbiol 65:2015–2019

    PubMed  PubMed Central  Google Scholar 

  • Stark BC, Pagilla KR, Dikshit KL (2015) Recent applications of Vitreoscilla hemoglobin technology in bioproduct synthesis and bioremediation. Appl Microbiol Biotechnol 99:1627–1636. doi:10.1007/s00253-014-6350-y

    Article  CAS  PubMed  Google Scholar 

  • Suárez R, Wong A, Ramírez M, Barraza A, Orozco MDC, Cevallos MA, Lara M, Hernández G, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose 6-phosphate synthase in rhizobia. Mol Plant Microbe Interact 21:958–966. doi:10.1094/MPMI-21-7-0958

    Article  PubMed  Google Scholar 

  • Summerfield RJ, Huxley PA, Minchin FR (1977) Plant husbandry management techniques for growing grain legumes under simulated tropical conditions in controlled environments. Exp Agric 13:113–121. doi:10.1017/S0014479700007638

    Article  Google Scholar 

  • Talbi C, Sánchez C, Hidalgo-Garcia A, González EM, Arrese-Igor C, Girard L, Delgado MJ (2012) Enhanced expression of Rhizobium etli cbb 3 oxidase improves drought tolerance of common bean symbiotic nitrogen fixation. J Exp Bot 63:5035–5043. doi:10.1093/jxb/ers101

    Article  CAS  PubMed  Google Scholar 

  • Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MapMan: a user-driven tool to display genomic data sets onto diagrams of metabolic pathways other biological processes. Plant J 37:914–939. doi:10.1111/j.1365-313X.2004.02016.x

    Article  CAS  PubMed  Google Scholar 

  • Vadez V, Berger JD, Warkentin T, Asseng S, Kumar PR, Rao KPC (2012) Adaptation of grain legumes to climate change: a review. Agron Sustain Dev 32:31–44. doi:10.1007/s13593-011-0020-6

    Article  Google Scholar 

  • Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:1. doi:10.1186/s12870-016-0771-y

    Article  Google Scholar 

  • Vogels GD, Van Der Drift C (1970) Differential analyses of glyoxylate derivatives. Anal Biochem 33:143–157

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi S, Matsubara H, Webster DA (1986) Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla. Nature 322:481–483. doi:10.1038/322481a0

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Xiao Y, Chen W, Tang K, Zhang L (2009) Functional expression of Vitreoscilla hemoglobin (VHb) in Arabidopsis relieves submergence, nitrosative, photo-oxidative stress and enhances antioxidants metabolism. Plant Sci 176:66–77. doi:10.1186/s12870-016-0728-1

    Article  CAS  Google Scholar 

  • Wittenberg JB (2012) Reactivity and function of leghemoglobin. In: Caughey W (ed) Biochemical and clinical aspects of oxygen. Academic Press, London, pp 53–68

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Michael Dunn for critical review of this manuscript and Biol.Víctor Bustos for technical assistance. This work was supported partially by PAPIIT grant IN214308 from Dirección General de Asuntos del Personal Académico – UNAM. LP Íñiguez is a student from Doctorado en Ciencias Biomédicas – UNAM and a recipient of a studentship from CONACyT, México (No. 340334).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Ramírez.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez, M., Íñiguez, L.P., Guerrero, G. et al. Rhizobium etli bacteroids engineered for Vitreoscilla hemoglobin expression alleviate oxidative stress in common bean nodules that reprogramme global gene expression. Plant Biotechnol Rep 10, 463–474 (2016). https://doi.org/10.1007/s11816-016-0422-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-016-0422-7

Keywords

Navigation