Skip to main content
Log in

Strong activity of FLPe recombinase in rice plants does not correlate with the transmission of the recombined locus to the progeny

  • Short Communication
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Efficient methods for DNA excision are needed for removing selectable marker genes from transgenic plants. The present work evaluated the enhanced FLP recombinase, FLPe, for excising FLP recombination target (FRT)-flanked marker genes, and generating marker-free rice lines. Previously, the transient FLPe activity was found to be at least threefold higher on the transgene locus compared to that of FLPwt, the wild-type FLP recombinase. In this study, transgenic plants expressing FLPe were cross-pollinated with the plants harboring FRT site to analyze marker excision in F1 plants, and the transmission of marker-free locus to F2 progeny. The FLPe activity, expressed by the strong promoter (maize ubiquitin-1 gene), efficiently excised FRT-flanked marker gene in rice plants. However, marker excision in F2 progeny was tightly linked with the presence of FLPe gene, suggesting insufficient recombination in the gametophyte. The maize ubiquitin-1 promoter is reportedly active in gametophytic tissue and effective in meiotic transmission of the marker-free locus generated by Cre–lox recombination. Therefore, the observed lack of meiotic transmission in this study is possibly due to the limited efficiency of FLPe recombinase. While the reason for the FLPe inefficiency in the gametophyte is not clear, this work highlights the constraints of FLPe recombinase in generating stable marker-free plant lines through cross-pollination or gene induction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Akbudak MA, Srivastava V (2011) Improved FLP recombinase, FLPe, efficiently removes marker gene from transgene locus developed by Cre–lox mediated site-specific gene integration in rice. Mol Biotechnol 49:82–89

    Article  CAS  PubMed  Google Scholar 

  • Bala A, Roy A, Das A, Chakraborti D, Das S (2013) Development of selectable marker free, insect resistant, transgenic mustard (Brassica juncea) plants using Cre–lox mediated recombination. BMC Biotechnol 13:88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bar M, Leshem B, Gilboa N, Gidoni D (1996) Visual characterization of recombination at FRT-gusA loci in transgenic tobacco mediated by constitutive expression of the native FLP recombinase. Theor Appl Genet 93:407–413

    Article  CAS  PubMed  Google Scholar 

  • Buchholz F, Ringrose L, Angrand PO, Rossi F, Stewart AF (1996) Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. Nucleic Acids Res 24:4256–4262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buchholz F, Angrand PO, Stewart AF (1998) Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat Biotechnol 16:657–662

    Article  CAS  PubMed  Google Scholar 

  • Chong-Pérez B, Reyes M, Rojas L, Ocaña B, Ramos A, Kosky RG, Angenon G (2013) Excision of a selectable marker gene in transgenic banana using a Cre–lox system controlled by an embryo specific promoter. Plant Mol Biol 83:143–152

    Article  PubMed  Google Scholar 

  • Dale EC, Ow DW (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA 88:10558–10562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Darbani B, Eimanifar A, Stewart CN Jr, Camargo WN (2007) Methods to produce marker-free transgenic plants. Biotechnol J 2:83–90

    Article  CAS  PubMed  Google Scholar 

  • Davies GJ, Kilby NJ, Riou-Khamlichi C, Murray JAM (1999) Somatic and germinal inheritance of an FLP-mediated deletion in transgenic tobacco. J Exp Bot 338:1447–1456

    Article  Google Scholar 

  • Eudes A, Mouille G, Thévenin J, Goyallon A, Minic Z, Jouanin L (2008) Purification, cloning and functional characterization of an endogenous beta-glucuronidase in Arabidopsis thaliana. Plant Cell Physiol 49:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Gidoni D, Bar M, Gilboa N (2001) FLP/FRT-mediated restoration of normal phenotypes and clonal sectors formation in rolC transgenic tobacco. Transg Res 10:317–328

    Article  CAS  Google Scholar 

  • Gidoni D, Srivastava V, Carmi N (2008) Site-specific excisional recombination strategies for elimination of undesirable transgenes from crop plants. In Vitro Cell Dev Biol Plant 44:457–467

    Article  CAS  Google Scholar 

  • Gilbertson L (2003) Cre–lox recombination: creative tools for plant biotechnology. Trends Biotechnol 21:550–555

    Article  CAS  PubMed  Google Scholar 

  • Hoa TT, Bong BB, Huq E, Hodges TK (2002) Cre–lox site-specific recombination controls the excision of a transgene from the rice genome. Theor Appl Genet 104:518–525

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Kononowicz-Hodges H, Nelson-Vasilchik K, Viola D, Zeng P, Liu H, Kausch AP, Chandlee JM, Hodges TK, Luo H (2008) FLP recombinase-mediated site-specific recombination in rice. Plant Biotechnol J 6:176–188

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Kerbach S, Lörz H, Becker D (2005) Site-specific recombination in Zea mays. Theor Appl Genet 111:1608–1616

    Article  CAS  PubMed  Google Scholar 

  • Khattri A (2006) Evaluation of inducible FLP–FRT and Cre–lox systems for marker gene deletion in rice. MS thesis, University of Arkansas, Fayetteville

  • Khattri A, Nandy S, Srivastava V (2011) Heat-inducible Cre–lox system for marker excision in transgenic rice. J Biosci 36:37–42

    Article  CAS  PubMed  Google Scholar 

  • Kilby NJ, Davies GJ, Snaith MR (1995) FLP recombinase in transgenic plants: constitutive activity in stably transformed tobacco and generation of marked cell clones in Arabidopsis. Plant J 8:637–652

    Article  CAS  PubMed  Google Scholar 

  • Kondo S, Takata Y, Nakano M, Saito I, Kanegae Y (2009) Activities of various FLP recombinases expressed by adenovirus vectors in mammalian cells. J Mol Biol 390:221–230

    Article  CAS  PubMed  Google Scholar 

  • Krohn NG, Lausser A, Juranić M, Dresselhaus T (2012) Egg cell signaling by the secreted peptide ZmEAL1 controls antipodal cell fate. Dev Cell 23:219–225

    Article  CAS  PubMed  Google Scholar 

  • Lemaux PG (2008) Genetically engineered plants and foods: a scientist’s analysis of the issues (part I). Annu Rev Plant Biol 59:771–812

    Article  CAS  PubMed  Google Scholar 

  • Li B, Li N, Duan X, Wei A, Yang A, Zhang J (2010) Generation of marker-free transgenic maize with improved salt tolerance using the FLP–FRT recombination system. J Biotechnol 145:206–213

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Yuan JS, Stewart CN Jr (2013) Advanced genetic tools for plant biotechnology. Nat Rev Genet 14:781–793

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lloyd AM, Davis RW (1994) Functional expression of the yeast FLP–FRT site-specific recombination system in Nicotiana tabacum. Mol Gen Genet 242:653–657

    Article  CAS  PubMed  Google Scholar 

  • Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen Y, Stewart CN Jr, McAvoy R, Jiang X, Wu Y, He A, Pei Y, Li Y (2007) ‘GM-gene-deletor’: fused loxP–FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol J 5:263–274

    Article  CAS  PubMed  Google Scholar 

  • Lyznik LA, Mitchell JC, Hirayama L, Hodges TK (1993) Activity of yeast FLP recombinase in maize and rice protoplasts. Nucleic Acids Res 21:969–975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moore S, Srivastava V (2006) Efficient deletion of transgenic DNA from complex integration locus of rice mediated by Cre–lox recombination system. Crop Sci 46:700–705

    Article  CAS  Google Scholar 

  • Mlynárová L, Conner A, Nap JP (2006) Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes. Plant Biotechnol J 4:445–452

    Article  PubMed  Google Scholar 

  • Nandy S, Srivastava V (2011) Site-specific gene integration in rice genome mediated by the FLP–FRT recombination system. Plant Biotechnol J 9:713–721

    Article  CAS  PubMed  Google Scholar 

  • Nandy S, Srivastava V (2012) Marker-free site-specific gene integration in rice based on the use of two recombination systems. Plant Biotechnol J 10:904–912

    Article  CAS  PubMed  Google Scholar 

  • O’Gorman S, Fox DT, Wahl GM (1991) Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251:1351–1355

    Article  PubMed  Google Scholar 

  • Ow DW (2002) Recombinase-directed plant transformation for the post-genomic era. Plant Mol Biol 48:183–200

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan P, Srivastava V (2005) Utility of the FLP–FRT recombination system for genetic manipulation of rice. Plant Cell Rep 23:721–726

    Article  CAS  PubMed  Google Scholar 

  • Raymond CS, Soriano P (2007) High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS ONE 2(1):e162

    Article  PubMed Central  PubMed  Google Scholar 

  • Russell SH, Hoopes JL, Odell JT (1992) Directed excision of a transgene from the plant genome. Mol Gen Genet 234:49–59

    CAS  PubMed  Google Scholar 

  • Schreiber DN, Dresselhaus T (2003) In vitro pollen germination and transient transformation of Zea mays and other plant species. Plant Mol Biol Rep 21:31–41

    Article  Google Scholar 

  • Sengupta S, Chakraborti D, Mondal HA, Das S (2010) Selectable antibiotic resistance marker gene-free transgenic rice harbouring the garlic leaf lectin gene exhibits resistance to sap-sucking plant hoppers. Plant Cell Rep 29:261–271

    Article  CAS  PubMed  Google Scholar 

  • Sonti RV, Tissier AF, Wong D, Viret JF, Signer ER (1995) Activity of the yeast FLP recombinase in Arabidopsis. Plant Mol Biol 28:1127–1133

    Article  CAS  PubMed  Google Scholar 

  • Sreekala C, Wu L, Gu K, Wang D, Tian D, Yin Z (2005) Excision of a selectable marker in transgenic rice (Oryza sativa L.) using a chemically regulated Cre–loxP system. Plant Cell Rep 24:86–94

    Article  CAS  PubMed  Google Scholar 

  • Srilunchang KO, Krohn NG, Dresselhaus T (2010) DiSUMO-like DSUL is required for nuclei positioning, cell specification and viability during female gametophyte maturation in maize. Development 137:333–345

    Article  CAS  PubMed  Google Scholar 

  • Srivastava V, Anderson OD, Ow DW (1999) Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc Natl Acad Sci USA 96:11117–11121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Srivastava V, Akbudak MA, Nandy S (2011) Marker-free plant transformation. In: Dan Y, Ow DW (eds) Historical technology developments in plant transformation. Bentham eBooks, China, pp 108–122

    Google Scholar 

  • Takata Y, Kondo S, Goda N, Kanegae Y, Saito I (2011) Comparison of efficiency between FLPe and Cre for recombinase-mediated cassette exchange in vitro and in adenovirus vector production. Genes Cells 16:765–777

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yau YY, Perkins-Balding D, Thomson JG (2011) Recombinase technology: applications and possibilities. Plant Cell Rep 30:267–285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu ZQ, Jia JF, Hao JG, Wang YJ, Feng SZ (2002) Expression activity of maize Ubi-1 promoter in fertile transgenic maize plants. Shi Yan Sheng Wu Xue Bao 35:296–302 (abstract)

    CAS  PubMed  Google Scholar 

  • Yau YY, Stewart CN Jr (2013) Less is more: strategies to remove marker genes from transgenic plants. BMC Biotechnol 13:36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang W, Subbarao S, Addae P, Shen A, Armstrong C, Peschke V, Gilbertson L (2003) Cre–lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor Appl Genet 107:1157–1168

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project is supported by the Biotechnology Risk Assessment Program Competitive Grant #2010-33522-21715 from the USDA National Institute of Food and Agriculture (NIFA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibha Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, L.D., Underwood, J.L., Nandy, S. et al. Strong activity of FLPe recombinase in rice plants does not correlate with the transmission of the recombined locus to the progeny. Plant Biotechnol Rep 8, 455–462 (2014). https://doi.org/10.1007/s11816-014-0332-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-014-0332-5

Keywords

Navigation