Skip to main content
Log in

Genomic stability in Nicotiana plants upon silencing of the mismatch repair gene MSH2

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

The Mismatch Repair (MMR) system is a highly conserved pathway for the maintenance of genomic stability in many organisms. In plants, this is particularly important because of the lack of a reserved germline. Suppression of MMR leads to an accumulation of random mutations in the genome over successive generations, and thus maximizes genetic diversity. MMR deficiency has been shown to be a useful technique in plant breeding, complementary to chemical or physical mutagenesis. We have developed an artificial microRNA (amiRNA) targeting the MSH2 gene, which is generally applicable in Solanaceae. Two amiRNA precursors were inserted in a transformation vector, under the control of the CaMV 35S promoter and the meiosis active AtDMC1 promoter, respectively. Introduction of this amiRNA construct in Nicotiana tabacum and N. plumbaginifolia reduced the MSH2 transcript levels to 20–30 %. Morphological and developmental abnormalities and plants with white sectors on the first pair of leaves or on the cotyledons (referred to as ‘chimeric albinos’) appeared in the transformed Nicotiana lines at higher frequencies than in the control lines. Also, some plants which show an increased tolerance for the herbicide chlorsulfuron were found. However, the mutant phenotypes were not transmitted to subsequent generations. We conclude that the designed amiRNA was capable of suppressing the MSH2 activity, which caused the occurrence of somatic mutations. Apparently, the silencing of MSH2 was not strong enough in the germline to cause inheritable mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adé J, Haffani Y, Belzile FJ (2001) Functional analysis of the Arabidopsis thaliana mismatch repair gene MSH2. Genome 44:651–657

    PubMed  Google Scholar 

  • Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18:1134–1151

    Article  PubMed  CAS  Google Scholar 

  • Bollmann SR, Tominey CM, Hoffman PD, Hoffman TMC, Hays JB (2011) Reversion-reporter transgenes to analyze all six base-substitution pathways in Arabidopsis. Plant Physiol 155:1286–1300

    Article  PubMed  CAS  Google Scholar 

  • Cecchetti V, Pomponi M, Altamura MM, Pezzotti M, Marsilio S, D’Angeli S, Tornielli GB, Costantino P, Cardarelli M (2004) Expression of rolB in tobacco flowers affects the coordinated processes of anther dehiscence and style elongation. Plant J 38:512–525

    Article  PubMed  CAS  Google Scholar 

  • Chao Q, Sullivan CD, Getz JM, Gleason KB, Sass PM, Nicolaides NC, Grasso L (2005) Rapid generation of plant traits via regulation of DNA mismatch repair. Plant Biotechnol J 3:399–407

    Article  PubMed  CAS  Google Scholar 

  • Chong-Pérez B, Kosky RG, Reyes M, Rojas L, Ocaña B, Tejeda M, Pérez B, Angenon G (2012) Heat shock induced excision of selectable marker genes in transgenic banana by the Cre-lox site-specific recombination system. J Biotechnol 159:265–273

    Article  PubMed  Google Scholar 

  • Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S (2001) High-throughput screening for induced point mutations. Plant Physiol 126:480–484

    Article  PubMed  CAS  Google Scholar 

  • Crouse GF (2010) An end for mismatch repair. Proc Natl Acad Sci USA 107:20851–20852

    Article  PubMed  CAS  Google Scholar 

  • Cuellar W, Gaudin A, Solorzano D, Casas A, Nopo L, Chudalayandi P, Medrano G, Kreuze J, Ghislain M (2006) Self-excision of the antibiotic resistance gene nptII using a heat inducible Cre-loxP system from transgenic potato. Plant Mol Biol 62:71–82

    Article  PubMed  CAS  Google Scholar 

  • Culligan KM, Hays JB (2000) Arabidopsis MutS homologs—AtMSH2, AtMSH3, AtMSH6, and a novel AtMSH7—form three distinct protein heterodimers with different specificities for mismatched DNA. Plant Cell 12:991–1002

    PubMed  CAS  Google Scholar 

  • Culligan KM, Meyer-Gauen G, Lyons-Weiler J, Hays JB (2000) Evolutionary origin, diversification and specialization of eukaryotic MutS homolog mismatch repair proteins. Nucleic Acids Res 28:463–471

    Article  PubMed  CAS  Google Scholar 

  • Dong C, Whitford R, Langridge P (2002) A DNA mismatch repair gene links to the Ph2 locus in wheat. Genome 45:116–124

    Article  PubMed  CAS  Google Scholar 

  • Doutriaux MP, Couteau F, Bergounioux C, White C (1998) Isolation and characterisation of the RAD51 and DMC1 homologs from Arabidopsis thaliana. Mol Gen Genet 257:283–291

    Article  PubMed  CAS  Google Scholar 

  • Duggleby RG, McCourt JA, Guddat LW (2008) Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol Biochem 46:309

    Article  PubMed  CAS  Google Scholar 

  • Emmanuel E, Yehuda E, Melamed-Bessudo C, Avivi-Ragolsky N, Levy AA (2006) The role of AtMSH2 in homologous recombination in Arabidopsis thaliana. EMBO Rep 7:100–105

    Article  PubMed  CAS  Google Scholar 

  • Endo M, Osakabe K, Ono K, Handa H, Shimizu T, Toki S (2007) Molecular breeding of a novel herbicide-tolerant rice by gene targeting. Plant J 52:157–166

    Article  PubMed  CAS  Google Scholar 

  • Fukui K (2010) DNA mismatch repair in eukaryotes and bacteria. J Nucleic Acids. doi:10.4061/2010/260512

  • Gómez R, Spampinato CP (2013) Mismatch recognition function of Arabidopsis thaliana MutSγ. DNA Repair 12:257–264

    Article  PubMed  Google Scholar 

  • Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH, Enns LC, Burtner C, Johnson JE, Odden AR, Comai L, Henikoff S (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740

    PubMed  CAS  Google Scholar 

  • Harfe BD, Jinks-Robertson S (2000) DNA mismatch repair and genetic instability. Annu Rev Genet 34:359–399

    Article  PubMed  CAS  Google Scholar 

  • Haughn GW, Smith J, Mazur B, Somerville C (1988) Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol Gen Genet 211:266–271

    Article  CAS  Google Scholar 

  • Higgins JD, Armstrong SJ, Franklin FCH, Jones GH (2004) The Arabidopsis MutS homolog AtMSH4 functions at an early step in recombination: evidence for two classes of recombination in Arabidopsis. Genes Dev 18:2557–2570

    Article  PubMed  CAS  Google Scholar 

  • Higgins JD, Vignard J, Mercier R, Pugh AG, Franklin FCH, Jones GH (2008) AtMSH5 partners AtMSH4 in the class I meiotic crossover pathway in Arabidopsis thaliana, but is not required for synapsis. Plant J 55:28–39

    Article  PubMed  CAS  Google Scholar 

  • Hoffman PD, Leonard JM, Lindberg GE, Bollmann SR, Hays JB (2004) Rapid accumulation of mutations during seed-to-seed propagation of mismatch-repair-defective Arabidopsis. Genes Dev 18:2676–2685

    Article  PubMed  CAS  Google Scholar 

  • Hollingsworth NM, Ponte L, Halsey C (1995) MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev 9:1728–1739

    Article  PubMed  CAS  Google Scholar 

  • Hombauer H, Srivatsan A, Putnam CD, Kolodner RD (2011) Mismatch repair, but not heteroduplex rejection, is temporally coupled to DNA replication. Science 334:1713–1716

    Article  PubMed  CAS  Google Scholar 

  • Hraška M, Rakouský S, Čurn V (2008) Tracking of the CaMV-35S promoter performance in GFP transgenic tobacco, with a special emphasis on flowers and reproductive organs, confirmed its predominant activity in vascular tissues. Plant Cell Tiss Organ Cult 94:239–251

    Article  Google Scholar 

  • Iyer RR, Pluciennik A, Burdett V, Modrich PL (2006) DNA mismatch repair: functions and mechanisms. Chem Rev 106:302–323

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Somers DE (2010) Rapid assessment of gene function in the circadian clock using artificial microRNA in Arabidopsis mesophyll protoplasts. Plant Physiol 154:611–621

    Article  PubMed  CAS  Google Scholar 

  • Klimyuk VI, Jones JDG (1997) AtDMC1, the Arabidopsis homologue of the yeast DMC1 gene: characterization, transposon-induced allelic variation and meiosis-associated expression. Plant J 11:1–14

    Article  PubMed  CAS  Google Scholar 

  • Kovalchuk I, Kovalchuk O, Hohn B (2000) Genome-wide variation of the somatic mutation frequency in transgenic plants. EMBO J 19:4431–4438

    Article  PubMed  CAS  Google Scholar 

  • Lafleuriel J, Degroote F, Depeiges A, Picard G (2007) Impact of the loss of AtMSH2 on double-strand break-induced recombination between highly diverged homeologous sequences in Arabidopsis thaliana germinal tissues. Plant Mol Biol 63:833–846

    Article  PubMed  CAS  Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Nat Biotechnol 9:963–967

    Article  CAS  Google Scholar 

  • Leonard JM, Bollmann SR, Hays JB (2003) Reduction of stability of Arabidopsis genomic and transgenic DNA-repeat sequences (microsatellites) by inactivation of AtMSH2 mismatch-repair function. Plant Physiol 133:328–338

    Article  PubMed  CAS  Google Scholar 

  • Li L, Jean M, Belzile F (2006) The impact of sequence divergence and DNA mismatch repair on homeologous recombination in Arabidopsis. Plant J 45:908–916

    Article  PubMed  CAS  Google Scholar 

  • Li J, Farmer AD, Lindquist IE, Dukowic-Schulze S, Mudge J, Li T, Retzel EF, Chen C (2012) Characterization of a set of novel meiotically-active promoters in Arabidopsis. BMC Plant Biol 12:104

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lloyd AH, Milligan AS, Langridge P, Able JA (2007) TaMSH7: a cereal mismatch repair gene that affects fertility in transgenic barley (Hordeum vulgare L.). BMC Plant Biol 7:67

    Article  PubMed  Google Scholar 

  • McElhinny SAN, Kissling GE, Kunkel TA (2010) Differential correction of lagging-strand replication errors made by DNA polymerases a and d. Proc Natl Acad Sci USA 107:21070–21075

    Article  Google Scholar 

  • Nicolaides NC, Littman SJ, Modrich P, Kinzler KW, Vogelstein B (1998) A naturally occurring hPMS2 mutation can confer a dominant negative mutator phenotype. Mol Cell Biol 18:1635–1641

    PubMed  CAS  Google Scholar 

  • Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690

    Article  PubMed  CAS  Google Scholar 

  • Ossowski S, Schneeberger K, Lucas-Lledó JI, Warthmann N, Clark RM, Shaw RG, Weigel D, Lynch M (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327:92–94

    Article  PubMed  CAS  Google Scholar 

  • Parsons R, Li GM, Longley M, Modrich P, Liu B, Berk T, Hamilton SR, Kinzler KW, Vogelstein B (1995) Mismatch repair deficiency in phenotypically normal human cells. Science 268:738–740

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Burow MD, Draye X, Elsik CG, Jiang CX, Katsar CS, Lan TH, Lin YR, Ming R, Wright RJ (2000) Comparative genomics of plant chromosomes. Plant Cell 12:1523–1539

    PubMed  CAS  Google Scholar 

  • Pluciennik A, Dzantiev L, Iyer RR, Constantin N, Kadyrov FA, Modrich P (2010) PCNA function in the activation and strand direction of MutLα endonuclease in mismatch repair. Proc Natl Acad Sci USA 107:16066–16071

    Article  PubMed  CAS  Google Scholar 

  • Ross-Macdonald P, Roeder GS (1994) Mutation of a meiosis-specific MutS homolog decreases crossing over but not mismatch correction. Cell 79:1069–1080

    Article  PubMed  CAS  Google Scholar 

  • Sachadyn P (2010) Conservation and diversity of MutS proteins. Mutat Res 694:20–30

    Article  PubMed  CAS  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  PubMed  CAS  Google Scholar 

  • Shi R, Yang C, Lu S, Sederoff R, Chiang VL (2010) Specific down-regulation of PAL genes by artificial microRNAs in Populus trichocarpa. Planta 232:1281–1288

    Article  PubMed  CAS  Google Scholar 

  • Stevens R, Grelon M, Vezon D, Oh J, Meyer P, Perennes C, Domenichini S, Bergounioux C (2004) A CDC45 homolog in Arabidopsis is essential for meiosis, as shown by RNA interference-induced gene silencing. Plant Cell 16:99–113

    Article  PubMed  CAS  Google Scholar 

  • Sunilkumar G, Mohr LA, Lopata-Finch E, Emani C, Rathore KS (2002) Developmental and tissue-specific expression of CaMV 35S promoter in cotton as revealed by GFP. Plant Mol Biol 50:463–474

    Article  PubMed  CAS  Google Scholar 

  • Tam SM, Samipak S, Britt A, Chetelat RT (2009) Characterization and comparative sequence analysis of the DNA mismatch repair MSH2 and MSH7 genes from tomato. Genetica 137:341–354

    Article  PubMed  CAS  Google Scholar 

  • Tam SM, Hays JB, Chetelat RT (2011) Effects of suppressing the DNA mismatch repair system on homeologous recombination in tomato. Theor Appl Genet 123:1445–1458

    Article  PubMed  CAS  Google Scholar 

  • Tian L, Gu L, Li GM (2009) Distinct nucleotide binding/hydrolysis properties and molar ratio of MutSα and MutSβ determine their differential mismatch binding activities. J Biol Chem 284:11557–11562

    Article  PubMed  CAS  Google Scholar 

  • Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19

    Article  PubMed  Google Scholar 

  • Toppino L, Kooiker M, Lindner M, Dreni L, Rotino GL, Kater MM (2011) Reversible male sterility in eggplant (Solanum melongena L.) by artificial microRNA-mediated silencing of general transcription factor genes. Plant Biotechnol J 9:684–692

    Article  PubMed  CAS  Google Scholar 

  • Tran HT, Keen JD, Kricker M, Resnick MA, Gordenin DA (1997) Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Mol Cell Biol 17:2859–2865

    PubMed  CAS  Google Scholar 

  • Umar A, Kunkel TA (1996) DNA-replication fidelity, mismatch repair and genome instability in cancer cells. Eur J Biochem 238:297–307

    Article  PubMed  CAS  Google Scholar 

  • Van der Auwera G, Baute J, Bauwens M, Peck I, Piette D, Pycke M, Asselman P, Depicker A (2008) Development and application of novel constructs to score C:G- to -T:A transitions and homologous recombination in Arabidopsis. Plant Physiol 146:22–31

    Article  PubMed  Google Scholar 

  • Verweire D (2008) Characterization of putative germline-specific promoters from Arabidopsis thaliana and their application in DNA modification strategies. PhD thesis. Department of Applied Biological Sciences. Vrije Universiteit Brussel, Brussels

  • Verweire D, Verleyen K, De Buck S, Claeys M, Angenon G (2007) Marker-free transgenic plants through genetically programmed auto-excision. Plant Physiol 145:1220–1231

    Article  PubMed  CAS  Google Scholar 

  • Wu SY, Culligan K, Lamers M, Hays J (2003) Dissimilar mispair-recognition spectra of Arabidopsis DNA-mismatch-repair proteins MSH2·MSH6 (MutSα) and MSH2·MSH7 (MutSγ). Nucleic Acids Res 31:6027–6034

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Li M, Chen L, Wu G, Li H (2012) Rapid generation of rice mutants via the dominant negative suppression of the mismatch repair protein OsPMS1. Theor Appl Genet 125:975–986

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Martine Claeys for assistance with plant growth and maintenance. This research is funded by the Agency for Innovation by Science and Technology in Flanders (IWT-Vlaanderen) through a PhD scholarship to I.V.M. and by Research Foundation-Flanders (FWO; research project G.0067.09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geert Angenon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1: a. Alignment of the cDNA sequences of MSH2 from Oryza sativa, Arabidopsis thaliana, Petunia hybrida, Nicotiana tabacum, Nicotiana plumbaginifolia, and Solanum lycopersicum and the genomic DNA sequence from Solanum tuberosum. Position in the sequences is indicated between parentheses. The numbering for the N. plumbaginifolia and S. tuberosum sequences is according to a sequenced fragment and not to the full sequence. The position of the target site of the amiRNA is indicated with a grey bar. Yellow and blue backgrounds indicate identical nucleotides; b. Alignment of the protein sequences of MSH2 from O. sativa, A. thaliana, P. hybrida, N. tabacum, S. lycopersicum, and S. tuberosum. Position in the sequences is indicated between parentheses. The numbering for the S. tuberosum sequence is according to a sequenced fragment and not to the full sequence.

Fig. S2: a. Quantitative real-time RT-PCR analysis on homozygous T3-generation Ntami lines; b. Quantitative real-time analysis RT-PCR on some T4-generation Ntami lines, which showed an increased frequency of mutant phenotypes (see Sect. 3.3); c. Quantitative real-time RT-PCR analysis on some T5-generation Ntami lines, which showed an increased frequency of mutant phenotypes (see Sect. 3.3) or a slightly increased tolerance for the herbicide chlorsulfuron (Ntami-CS line, see Sect. 3.4). Total RNA was extracted from 2-weeks-old plants and the relative expression levels of the MSH2 gene were determined in the Ntami lines compared to the corresponding negative controls NtL2K-1.19 (T3-generation), NtL2K-1.19.M5 (T4-generation) and NtL2K-1.19.x.A3 (T5-generation). * significantly different from the control (p = 0.05).

Fig. S3: Examples of aberrant phenotypes observed during successive generations of Ntami lines: a. Morphological and developmental mutant phenotypes; b. Chimeric albinos (white sectors on the first pair of leaves or on the cotyledons); c. Callus-like tissues.

Fig. S4: Observed mutation frequencies (%) during in vitro screenings for aberrant phenotypes in the T5-progeny of chimeric albinos in the T4-generation (observed during in vivo screening). About 3000 plants per line were screened. * significantly different from NtL2K-1.19.A1 (p = 0.05 when only the chimeric albinos are taken into account; p = 0.09 when the total number of mutant phenotypes was taken into account).

Fig. S5: a. Example of Ntami-CS plants that survived the treatment with chlorsulfuron; b. Example of plants in the progeny of Ntami-CS plants that survived the treatment with chlorsulfuron; c. Nursery tray with progeny plants from Ntami-CS plants after chlorsulfuron treatment. Only a few plants survived the treatment; d. Nursery tray with wild type plants after chlorsulfuron treatment. None of the plants survived the treatment.

Supplementary material 1 (TIFF 2009 kb)

Supplementary material 1 (TIFF 1679 kb)

Supplementary material 3 (TIFF 2740 kb)

Supplementary material 4 (TIFF 1156 kb)

Supplementary material 5 (TIFF 12263 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Marcke, I., Angenon, G. Genomic stability in Nicotiana plants upon silencing of the mismatch repair gene MSH2 . Plant Biotechnol Rep 7, 467–480 (2013). https://doi.org/10.1007/s11816-013-0285-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-013-0285-0

Keywords

Navigation