Skip to main content
Log in

The suppression of the glutelin storage protein gene in transgenic rice seeds results in a higher yield of recombinant protein

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Glutelin is a major seed storage protein, accounting for 60–80 % of the total endosperm protein content in rice. To test whether we could augment the expression of an introduced recombinant protein in rice by suppressing the glutelin gene, we generated transgenic glutelin RNAi (glu RNAi) rice seeds. RNA gel blot analyses confirmed that the endogenous glutelin gene was severely suppressed in these transgenic rice lines. RT-PCR analysis further revealed that all the members of glutelin multigene family were downregulated. Transgenic glu RNAi rice seeds expressing a recombinant red fluorescent protein (RFP) showed stronger fluorescence than seeds transformed with the RFP gene only. Western blot analysis further revealed that the relative accumulation of RFP in glu RNAi seeds was twofold higher than that in the RFP-only transgenic seeds. These results suggest that RNAi targeting of an endogenous storage protein could be of great utility in obtaining higher transgene expression in genetically engineered rice and other plant lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Fischer R, Emans N (2000) Molecular farming of pharmaceutical proteins. Transgenic Res 9:279–299

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Stoger E, Schilberg S, Christou P, Twyman RM (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7:152–158

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara Y, Aiki Y, Yang L, Takaiwa F, Kosada A, Tsuji N, Shiraki K, Sekikawa K (2010) Extraction and purification of human interleukin-10 from transgenic rice seeds. Protein Exp Purif 72:125–130

    Article  CAS  Google Scholar 

  • Goossens A, Montagu MV, Angenon G (1999) Co-introduction an antisense gene for an endogenous seed storage protein can increase expression of a transgene in Arabidopsis thaliana seeds. FEBS Lett 456:160–164

    Article  PubMed  CAS  Google Scholar 

  • Ha SH, Liang YS, Jung H, Ahn MJ, Suh SC, Kweon SJ, Kim DH, Kim YM, Kim JK (2010) Application of two bicistronic systems involving 2A and IRES sequences to the biosynthesis of carotenoids in rice endosperm. Plant Biotechnol J 8:928–938

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Jang IC, Choi WB, Lee KH, Song SI, Nahm BH, Kim JK (2002) High-level and ubiquitous expression of the rice cytochrome c gene OsCc1 and its promoter activity in transgenic plants provides a useful promoter for transgenesis of monocots. Plant Physiol 129:1473–1481

    Article  PubMed  CAS  Google Scholar 

  • Karimi M, Inze D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–196

    Article  PubMed  CAS  Google Scholar 

  • Kawakatsu T, Yamamoto M, Hirose S, Yano M, Takaiwa F (2008) Characterization of a new rice glutelin gene GluD-1 expressed in the starchy endosperm. J Exp Bot 59:4233–4245

    Article  PubMed  CAS  Google Scholar 

  • Kawasatsu T, Hirose S, Yasuda H, Takaiwa F (2010) Reducing rice seed storage protein accumulation leads to changes in nutrient quality and storage organelle formation. Plant Physiol 154:1842–1854

    Article  Google Scholar 

  • Kuribara H, Shindo Y, Matsuoka T, Takubo K, Futo S, Aoki N, Hirao T, Akiyama H, Goda Y, Toyada M, Hino A (2002) Novel reference molecules for quantitation of genetically modified maize and soybean. J AOAC Int 85(5):1077–1089

    PubMed  CAS  Google Scholar 

  • Kuroda M, Kizumi M, Mikami C (2010) A simple set of plasmids for the production of transgenic plants. Biosci Biotechnol Biochem 74:2348–2351

    Article  PubMed  CAS  Google Scholar 

  • Kusaba M, Miyahara K, Iida S, Fukuoka H, Takano T, Sassa H, Nishimura M, Nishio T (2003) Low glutelin content1: a dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. Plant Cell 15:1455–1467

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Kang SH, Park YH, Min DM, Kim YM (2006) Quantitative analysis of two genetically modified maize lines by real-time PCR. J Microbiol Biotechnol 16:205–211

    CAS  Google Scholar 

  • Lin C, Nie P, Lu W, Zhang Q, Li J, Shen Z (2010) A selectively terminable transgenic rice line expressing human lactoferrin. Protein Exp Purif 74:60–64

    Article  CAS  Google Scholar 

  • Liu W, Liu H, Chai Z, Xu X, Song Y, Qu L (2010) Evaluation of seed storage-protein gene 5′ untranslated regions in enhancing gene expression in transgenic rice seed. Theor Appl Genet 121:1267–1274

    Article  PubMed  CAS  Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF4/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351

    Article  PubMed  CAS  Google Scholar 

  • Oono Y, Wakasa Y, Hirose S, Yang L, Sakuta C, Takaiwa F (2010) Analysis of ER stress in developing rice endosperm accumulating beta-amyloid peptide. Plant Biotechnol J 8:691–718

    Article  PubMed  CAS  Google Scholar 

  • Qu LQ, Takaiwa F (2004) Evaluation of tissue specificity and expression strength of rice seed component gene promoters in transgenic rice. Plant Biotechnol J 2:113–115

    Article  CAS  Google Scholar 

  • Qu LQ, Yoshihara T, Ooyama A, Goto Y, Takaiwa F (2005) Iron accumulation does not parallel the high expression level of ferritin in transgenic rice seeds. Planta 222:225–233

    Article  CAS  Google Scholar 

  • Qu LQ, Xing YP, Liu WX, Xu XP, Song YR (2008) Expression pattern and activity of six glutelin gene promoters in transgenic rice. J Exp Bot 59:2417–2424

    Article  CAS  Google Scholar 

  • Rho JK, Lee T, Jung SI, Kim TS, Park YH, Kim YM (2004) Qualitative and quantitative PCR methods for detection of three lines of genetically modified potatoes. J Agric Food Chem 52:3269–3274

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sardana R, Dudani A, Tackaberry E, Alli Z, Porter S, Rowlandson K, Ganz P, Altosaar I (2007) Biologically active human GM-CSF produced in the seeds of transgenic rice plants. Transgenic Res 16:713–721

    Article  PubMed  CAS  Google Scholar 

  • Stoger E, Sack M, Perrin Y, Vaquero C, Torres E, Twyman RM, Christou P, Fisher R (2002) Practical considerations for pharmaceutical antibodies production in different crop systems. Mol Breed 9:149–158

    Article  CAS  Google Scholar 

  • Stoger E, Ma JKC, Fisher R, Christou P (2005) Sowing the seeds of success: pharmaceutical proteins from plants. Curr Opin Biotechnol 16:167–173

    Article  PubMed  CAS  Google Scholar 

  • Su C, Xie J, Wang X, Peng Y (2011) Integrated structure and event-specific real-time detection of transgenic cry1Ac/SCK rice Kefeng 6. Eur Food Res Technol 232:351–359

    Article  CAS  Google Scholar 

  • Sundaresan V, Springer P, Volpe T, Haward S, Jones JD, Dean C, Ma H, Martienssen R (1995) Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Gene Dev 9:1797–1810

    Article  PubMed  CAS  Google Scholar 

  • Takaiwa F, Takagi H, Hirose S, Wakasa Y (2007) Endosperm tissue is good production platform for artificial recombinant proteins in transgenic rice. Plant Biotechnol J 5:84–92

    Article  PubMed  CAS  Google Scholar 

  • Wu CY, Adachi T, Hatano T, Washida H, Suzuki A, Takaiwa F (1998) Promoters of rice seed storage protein genes direct endosperm-specific gene expression in transgenic rice. Plant Cell Physiol 39:885–889

    Article  CAS  Google Scholar 

  • Yang LJ, Tada Y, Yamamoto MP, Zhao H, Yoshikawa M, Takaiwa F (2006) A transgenic rice seed accumulating an anti-hypertensive peptide reduces the blood pressure of spontaneously hypertensive rats. FEBS Lett 580:3315–3320

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Wakasa Y, Kawasatsu T, Takaiwa F (2009) The 3′-untranslated region of rice glutelin GluB-1 affects accumulation of heterologous protein in transgenic rice. Biotechnol Lett 31:1625–1631

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Nandi S, Bryan P, Pettit S, Nguyen D, Santos M, Huang N (2010) Expression, purification, and characterization of recombinant human transferring from rice (Oryza sativa L.). Protein Exp Purif 74:69–79

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Tom Okita and Dr. Ju-Kon Kim for kindly providing the anti-AGPase antibody and pMJ202 vector, respectively. We also thank Dr. Tanaka-Katsube for technical assistance and helpful discussions. This work was supported by National Academy of Agricultural Science, Rural Development Administration (PJ006680 to Y.-M. Kim), Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Mi Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11816_2012_230_MOESM1_ESM.pptx

Fig. S1. Genomic Southern blot analysis of Glu RNAi transgenic rice lines. Genomic DNAs from leaf tissues were digested with XhoI (Xh) and hybridized with the probes indicated in Figure 1. P, pGluRNAi vector positive control; WT, non-transgenic wild-type rice used as a negative control. (PPTX 276 kb)

11816_2012_230_MOESM2_ESM.pptx

Fig. S2. Analysis of the T-DNA flanking position in Glu RNAi rice plant line. The horizontal line represents rice chromosome 6. Filled arrows indicate the direction and position of the gene incorporated into the flanking region of the T-DNA in the rice genome. BL and BR indicate the borders of the pGluRNAi T-DNA. (PPTX 38 kb)

11816_2012_230_MOESM3_ESM.pptx

Fig. S3. Quantification of each band using the SCION image processing software. The arrows indicate each band’s corresponding pixel in the plot image. The bands analyzed are marked from 1 to 13. (PPTX 361 kb)

Fig. S4. RFP-expressing transgenic rice (left plant) and non-transgenic rice (right). (PPTX 102 kb)

Supplementary Tables (PPTX 77 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YM., Lee, JY., Lee, T. et al. The suppression of the glutelin storage protein gene in transgenic rice seeds results in a higher yield of recombinant protein. Plant Biotechnol Rep 6, 347–353 (2012). https://doi.org/10.1007/s11816-012-0230-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-012-0230-7

Keywords

Navigation