Skip to main content
Log in

Overexpression of human erythropoietin in tobacco does not affect plant fertility or morphology

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Human erythropoietin (EPO) is a leading product in the biopharmaceutical market, but functional EPO has only been produced in mammalian cells, which limits its application and drives up the production costs. Using plants to produce human proteins may be an alternative way to reduce the cost. However, a recent report demonstrated that overexpression of the human EPO gene (EPO) in tobacco or Arabidopsis rendered males sterile and retarded vegetative growth, which raises concern whether EPO might interfere with hormone levels in transgenic plants. In the present study, we demonstrated that overexpressing EPO with additional 5′-His tag and 3′ ER-retention peptides in tobacco did not cause any developmental defect compared to GUS plants. With our method, all 20 transgenic plants grew on selective medium and, further confirmed by PCR, were fertile. Most of them grew similarly compared to GUS plants. Only one transgenic plant (EPO2) was shorter in plant height but had twice the life span compared to other transgenic plants. When 11 randomly selected EPO plants, along with the abnormal plant EPO2, were subjected to RT-PCR analysis, all of them had detectable EPO transcripts. However, their protein levels varied considerably; seven of them had detectable EPO proteins analyzed by western blot. Our results indicate that overexpressing human EPO protein in plants does not have detrimental effects on growth and development. Our transformation systems allow us to further explore the possibility of glycoengineering tobacco plants for producing functional EPO and its derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • An G, Watson BD, Chiang CC (1986) Transformation of tobacco, tomato, potato and Arabidopsis thaliana using a binary Ti vector system. Plant Physiol 81:301–305

    Article  PubMed  Google Scholar 

  • Calvillo L, Latini R, Kajstura J, Leri A, Anversa P, Ghezzi P, Salio M, Cerami A, Brines M (2003) Recombinant human erythropoietin protects the myocardium from ischemia–reperfusion injury and promotes beneficial remodeling. Proc Natl Acad Sci USA 100:4802–4806. doi:10.1073/pnas.0630444100

    Article  PubMed  CAS  Google Scholar 

  • Cheon BY, Kim HJ, Oh KH, Bahn SC, Ahn JH, Choi JW, Ok SH, Bae JM, Shin JS (2004) Overexpression of human erythropoietin (EPO) affects plant morphologies: retarded vegetative growth in tobacco and male sterility in tobacco and Arabidopsis. Transgenic Res 13:541–549. doi:10.1007/s11248-004-2737-3

    Article  PubMed  CAS  Google Scholar 

  • Elliott S, Giffin J, Suggs S, Lau EP, Banks AR (1989) Secretion of glycosylated human erythropoietin from yeast directed by the alpha-factor leader region. Gene 79:167–180

    Article  PubMed  CAS  Google Scholar 

  • Fosket DE (1998) Cytokinins. In: Taiz L, Zeiger E (eds) Plant physiology, 2nd edn. Sinauer Associates, Sunderland, pp 621–650

    Google Scholar 

  • Fukuda MN, Sasaki H, Lopez L, Fukuda M (1989) Survival of recombinant erythropoietin in the circulation: the role of carbohydrates. Blood 73:84–89

    PubMed  CAS  Google Scholar 

  • Hellens R, Mullineaux P (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446–451

    Article  PubMed  CAS  Google Scholar 

  • Holsters M, de Waele D, Depicker A, Messens E, Van Montagu M, Schell J (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet 163:181–187

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry J, Hoffman N, Neidermeyer J, Rogers SG, Fraley RT (1988) Leaf disc transformation. In: Gelvin SB, Schilperoot RA (eds) Plant molecular biology manual. Kluwer Academic, Dordrecht, pp 1–9

    Google Scholar 

  • Jacobs K, Shoemaker C, Rudersdorf R, Neill SD, Kaufman RJ, Mufson A, Seehra J, Jones SS, Hewick R, Fritsch EF, Kawakita M, Shimizu T, Miyake T (1985) Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature 313:806–810

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Jelkmann W (1992) Erythropoietin: structure, control of production, and function. Physiol Rev 72:449–489

    PubMed  CAS  Google Scholar 

  • Kim YK, Shin HS, Tomiya N, Lee YC, Betenbaugh MJ, Cha HJ (2005) Production and N-glycan analysis of secreted human erythropoietin glycoprotein in stably transfected Drosophila S2 cells. Biotechnol Bioeng 92:452–461. doi:10.1002/bit.20605

    Article  PubMed  CAS  Google Scholar 

  • Krantz SB (1991) Erythropoietin. Blood 77:419–434

    PubMed  CAS  Google Scholar 

  • Lee-Huang S (1984) Cloning and expression of human erythropoietin cDNA in Escherichia coli. Proc Natl Acad Sci USA 81:2708–2712

    Article  PubMed  CAS  Google Scholar 

  • Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-Laine AC, Gomord V, Faye L (1998) N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 38:31–48. doi:10.1023/A:1006012005654

    Article  PubMed  CAS  Google Scholar 

  • Lin FK, Suggs S, Lin CH, Browne JK, Smalling R, Egrie JC, Chen KK, Fox GM, Martin F, Stabinsky Z, Badrawi SM, Lai PH, Goldwasser E (1985) Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci USA 82:7580–7584

    Article  PubMed  CAS  Google Scholar 

  • Ma JK, Drake PM, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805. doi:10.1038/nrg1177

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto S, Ikura K, Ueda M, Sasaki R (1995) Characterization of a human glycoprotein (erythropoietin) produced in cultured tobacco cells. Plant Mol Biol 27:1163–1172

    Article  PubMed  CAS  Google Scholar 

  • Morell AG, Gregoriadis G, Scheinberg IH, Hickman J, Ashwell G (1971) The role of sialic acid in determining the survival of glycoproteins in the circulation. J Biol Chem 246:1461–1467

    PubMed  CAS  Google Scholar 

  • Murashige T, Skoog FA (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Parsa CJ, Kim J, Riel RU, Pascal LS, Thompson RB, Petrofski JA, Matsumoto A, Stamler JS, Koch WJ (2004) Cardioprotective effects of erythropoietin in the reperfused ischemic heart: a potential role for cardiac fibroblasts. J Biol Chem 279:20655–20662. doi:10.1074/jbc.M314099200

    Article  PubMed  CAS  Google Scholar 

  • Pavlou AK, Reichert JM (2004) Recombinant protein therapeutics—success rates, market trends and values to 2010. Nat Biotechnol 22:1513–1519. doi:10.1038/nbt1204-1513

    Article  PubMed  CAS  Google Scholar 

  • Quelle FW, Caslake LF, Burkert RE, Wojchowski DM (1989) High-level expression and purification of a recombinant human erythropoietin produced using a baculovirus vector. Blood 74:652–657

    PubMed  CAS  Google Scholar 

  • Samuelsen AI, Martin RC, Mok DWS, Mok MC (1998) Expression of the yeast FRE genes in transgenic tobacco. Plant Physiol 118:51–58

    Article  PubMed  CAS  Google Scholar 

  • Sherwood JB (1984) The chemistry and physiology of erythropoietin. Vitam Horm 41:161–211

    Article  PubMed  CAS  Google Scholar 

  • Smith KJ, Bleyer AJ, Little WC, Sane DC (2003) The cardiovascular effects of erythropoietin. Cardiovasc Res 59:538–548

    Article  PubMed  CAS  Google Scholar 

  • Toledo JR, Sanchez O, Segui RM, Garcia G, Montanez M, Zamora PA, Rodriguez MP, Cremata JA (2006) High expression level of recombinant human erythropoietin in the milk of non-transgenic goats. J Biotechnol 123:225–235. doi:10.1016/j.jbiotec.2005.10.019

    Article  PubMed  CAS  Google Scholar 

  • van Ree R, Cabanes-Macheteau M, Akkerdaas J, Milazzo JP, Loutelier-Bourhis C, Rayon C, Villalba M, Koppelman S, Aalberse R, Rodriguez R, Faye L, Lerouge P (2000) Beta(1,2)-xylose and alpha(1,3)-fucose residues have a strong contribution in IgE binding to plant glycoallergens. J Biol Chem 275:11451–11458

    Article  PubMed  Google Scholar 

  • Wasley LC, Timony G, Murtha P, Stoudemire J, Dorner AJ, Caro J (1991) The importance of N- and O-linked oligosaccharides for the biosynthesis and in vitro and in vivo biologic activities of erythropoietin. Blood 77:2624–2632

    PubMed  CAS  Google Scholar 

  • Weise A, Altmann F, Rodriguez-Franco M, Sjoberg ER, Baumer W, Launhardt H, Kietzmann M, Gorr G (2007) High-level expression of secreted complex glycosylate recombinant human erythropoietin in the Physcomitrella ∆-fuc-t ∆-xyl-t mutant. Plant Biotechnol J 5:389–401. doi:10.1111/j.1467-7652.2007.00248.x

    Article  PubMed  CAS  Google Scholar 

  • Wright A, Morrison SL (1998) Effect of C2-associated carbohydrate structure on Ig effector function: studies with chimeric mouse-human IgG1 antibodies in glycosylation mutants of Chinese hamster ovary cells. J Immunol 160:3393–3402

    PubMed  CAS  Google Scholar 

  • Yuen CT, Storring PL, Tiplady RJ, Izquierdo M, Wait R, Gee CK, Gerson P, Lloyd P, Cremata JA (2003) Relationships between the N-glycan structures and biological activities of recombinant human erythropoietins produced using different culture conditions and purification procedures. Br J Haematol 121:511–526

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Grout BWW, Crisp P (2005) Variations in morphology and disease susceptibility of micropropagated rhubarb (Rheum rhaponticum) PC49, compared to conventional plants. Plant Cell Tissue Organ Cult 82:357–361

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Biotechnology Research Grant (2007-BRG-1223) from the North Carolina Biotechnology Center and a startup fund from the Golden LEAF Foundation to the Biomanufacturing Research Institute and Technology Enterprise (BRITE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahua Xie.

Additional information

T. A. Musa and C.-Y. Hung contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musa, T.A., Hung, CY., Darlington, D.E. et al. Overexpression of human erythropoietin in tobacco does not affect plant fertility or morphology. Plant Biotechnol Rep 3, 157–165 (2009). https://doi.org/10.1007/s11816-009-0086-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-009-0086-7

Keywords

Navigation