Skip to main content
Log in

Methanol synthesis from CO2 via hydrogenation route: Thermodynamics and process development with techno-economic feasibility analysis

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The present study investigated the thermodynamic and economic feasibility of methanol synthesis reactions from CO2 and H2. Three reactions, namely CO2 hydrogenation to methanol, reverse-water-gas-shift (RWGS) and methanol decomposition reaction, were considered. The effect of temperature, pressure and H2/CO2 mole ratio on CO2 conversion and methanol selectivity was examined explicitly. The simulation results were compared with experimental data. A conceptual process design for methanol synthesis from CO2 was developed using an Aspen Plus process simulator. At 250 °C and 50 bar, the analysis shows about 73% CO2 conversion and 99.7% CH3OH selectivity for a recycling ratio of 0.9. A techno-economic feasibility study was performed to understand the influence of feed and product cost, recycling ratio and plant throughput, on plant profit margins. The study revealed that the proposed process might be economically viable if the H2 price is lower than 1,500 $/ton and/or with a methanol production capacity of more than 250 tons/day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASPEN PEA:

Aspen process economic analyzer

DPBP:

discounted payback period

d:

discount rate

CEPCI:

chemical engineering plant cost index

CF:

cash flow

Cnew :

capacity of new equipment

C ref :

capacity of reference equipment

DC:

direct cost

DCFA:

discounted cash flow analysis

FCI:

fixed capital investment

IC:

indirect cost

IRR:

internal rate of return

NPV:

net present value

PBP:

payback period

Pr :

reaction pressure

Pnew :

purchased cost of new equipment

P ref :

purchased cost of reference equipment

R:

recycling ratio

REquil:

equilibrium reactor model

RF:

ratio factor

RWGS:

reverse-water-gas-shift

SMeOH :

methanol selectivity

TCI:

total capital investment

TPC:

total product cost

TPP:

total plant profit

TR :

reaction temperature

WCI:

working capital investment

WGS:

water-gas-shift

\(\rm{X}{CO{2}}\) :

CO2 conversion

ΔG:

Gibbs free energy change

ΔH:

enthalpy change

ΔS:

entropy change

References

  1. NESRL ESRL, Available at: https://gml.noaa.gov/ccgg/trends/gl_trend.html.

  2. P. S. Murthy, W. Liang, Y. Jiang and J. Huang, Energy Fuels, 35, 8558 (2021).

    Article  CAS  Google Scholar 

  3. Z. Han, C. Tang, J. Wang, L. Li and C. Li, J. Catal., 394, 236 (2021).

    Article  CAS  Google Scholar 

  4. J. Zhang, Z. Li, Z. Zhang, R. Liu, B. Chu and B. Yan, ACS Sustain. Chem. Eng., 8, 18062 (2020).

    Article  CAS  Google Scholar 

  5. P. Murge, S. Dinda and S. Roy, Energy Fuels, 32, 10786 (2018).

    Article  CAS  Google Scholar 

  6. F. Sha, Z. Han, S. Tang, J. Wang and C. Li, ChemSusChem, 13, 6160 (2020).

    CAS  PubMed  Google Scholar 

  7. G. Leonzio, E. Zondervan and P. U. Foscolo, Int. J. Hydrogen Energy, 44, 7915 (2019).

    Article  CAS  Google Scholar 

  8. J. Qaderi, Int. J. Innov. Res. Sci. Stud., 3, 33 (2020).

    Google Scholar 

  9. M.-S. Salehi, M. Askarishahi, F. Gallucci and H. R. Godini, Chem. Eng. Process. — Process Intensif., 160, 108264 (2021).

    Article  CAS  Google Scholar 

  10. Z. Cai, J. Dai, W. Li, K. B. Tan, Z. Huang, G. Zhan, J. Huang and Q. Li, ACS Catal., 10, 13275 (2020).

    Article  CAS  Google Scholar 

  11. J. Zhong, X. Yang, Z. Wu, B. Liang, Y. Huang and T. Zhang, Chem. Soc. Rev., 49, 1385 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. T. Witoon, T. Permsirivanich, W. Donphai, A. Jaree and M. Chareonpanich, Fuel Process Technol., 116, 72 (2013).

    Article  CAS  Google Scholar 

  13. A. S. Malik, S. F. Zaman, A. A. Al-Zahrani, M. A. Daous, H. Driss and L. A. Petrov, Appl. Catal. A Gen., 560, 42 (2018).

    Article  CAS  Google Scholar 

  14. N. Rui, F. Zhang, K. Sun, Z. Liu, W. Xu, E. Stavitski, S. D. Senanayake, J. A. Rodriguez and C. J. Liu, ACS Catal., 10, 11307 (2020).

    Article  CAS  Google Scholar 

  15. S. Kanuri, S. Roy, C. Chakraborty, S. P. Datta, S. A. Singh and S. Dinda, Int. J. Energy Res., 46, 5503 (2022).

    Article  CAS  Google Scholar 

  16. R. Gaikwad, A. Bansode and A. Urakawa, J. Catal., 343, 127 (2016).

    Article  CAS  Google Scholar 

  17. T. Zou, T. P. Araújo, F. Krumeich, C. Mondelli and J. Pérez-Ramírez, ACS Sustain. Chem. Eng., 10, 81 (2022).

    Article  CAS  Google Scholar 

  18. G. Leonzio, Processes, 5, 62 (2017).

    Article  Google Scholar 

  19. C. Zhang, K. W. Jun, R. Gao, G. Kwak and H. G. Park, Fuel, 190, 303 (2017).

    Article  CAS  Google Scholar 

  20. P. Rosha, S. Kumar and H. Ibrahim, Sustain. Energy Fuels, 5, 4336 (2021).

    Article  CAS  Google Scholar 

  21. F. N. Al-Rowaili, S. S. Khalafalla, D. S. Al-Yami, A. Jamal, U. Ahmed, U. Zahid and E. M. Al-Mutairi, Chem. Eng. Res. Des., 177, 365 (2022).

    Article  CAS  Google Scholar 

  22. P. Borisut and A. Nuchitprasittichai, Front. Energy Res., 7, 1 (2019).

    Article  Google Scholar 

  23. K. Atsonios, K. D. Panopoulos and E. Kakaras, Int. J. Hydrogen Energy, 41, 2202 (2016).

    Article  CAS  Google Scholar 

  24. D. Bellotti, M. Rivarolo, L. Magistri and A. F. Massardo, J. CO 2 Util., 21, 132 (2017).

    Article  CAS  Google Scholar 

  25. J. Nyári, M. Magdeldin, M. Larmi, M. Järvinen and A. Santasalo-Aarnio, J. CO 2 Util., 39, 101166 (2020).

    Article  Google Scholar 

  26. M. Son, M. J. Park, G. Kwak, H. G. Park and K. W. Jun, Korean J. Chem. Eng., 35, 355 (2018).

    Article  CAS  Google Scholar 

  27. J. H. Jeong, S. Kim, M. J. Park and W. B. Lee, Korean J. Chem. Eng., 39, 1709 (2022).

    Article  CAS  Google Scholar 

  28. J. H. Jeong, Y. Kim, S. Y. Oh, M. J. Park and W. B. Lee, Korean J. Chem. Eng., 39, 1989 (2022).

    Article  CAS  Google Scholar 

  29. M. Rafati, L. Wang, D. C. Dayton, K. Schimmel, V. Kabadi and A. Shahbazi, Energy Convers. Manag., 133, 153 (2017).

    Article  CAS  Google Scholar 

  30. R. Gao, C. Zhang, G. Kwak, Y. J. Lee, S. C. Kang and G. Guan, Energy Convers. Manag., 213, 112819 (2020).

    Article  CAS  Google Scholar 

  31. A. I. Osman, N. Mehta, A. M. Elgarahy, M. Hefny, A. A. Hinai, A. H. A. Muhtaseb and D. W. Rooney, Environ. Chem. Lett., 20, 153 (2022).

    Article  CAS  Google Scholar 

  32. Y. G. Noh, Y. J. Lee, J. Kim, Y. K. Kim, J. S. Ha, S. S. Kalanur and H. Seo, Chem. Eng. J., 428, 131095 (2021).

    Article  Google Scholar 

  33. N. Pirrone, F. Bella and S. Hernandez, Green Chem., 24, 5379 (2022).

    Article  CAS  Google Scholar 

  34. B. Brigljević, M. Byun and H. Lim, Appl. Energy, 274, 115314 (2020).

    Article  Google Scholar 

  35. C. V. Miguel, M. A. Soria, A. Mendes and L. M. Madeira, J. Nat. Gas Sci. Eng., 22, 1 (2015).

    Article  CAS  Google Scholar 

  36. K. Ahmad and S. Upadhyayula, Environ. Prog. Sustain. Energy, 38, 98 (2019).

    Article  CAS  Google Scholar 

  37. K. Stangeland, H. Li and Z. Yu, Ind. Eng. Chem. Res., 57, 4081 (2018).

    Article  CAS  Google Scholar 

  38. I. U. Din, M. S. Shaharun, M. A. Alotaibi, A. I. Alharthi and A. Naeem, J. CO 2 Util., 34, 20 (2019).

    Article  CAS  Google Scholar 

  39. J. Zhong, X. Yang, Z. Wu, B. Liang, Y. Huang and T. Zhang, Chem. Soc. Rev., 49, 1385 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. X. L. Liang, X. Dong, G. D. Lin and H. Bin Zhang, Appl. Catal. B Environ., 88, 315 (2009).

    Article  CAS  Google Scholar 

  41. Y. Liu, Y. Zhang, T. Wang and N. Tsubaki, Chem. Lett., 36, 1182 (2007).

    Article  CAS  Google Scholar 

  42. X. Chang, X. Han, Y. Pan, Z. Hao, J. Chen, M. Li, J. Lv and X. Ma, Ind. Eng. Chem. Res., 61, 6872 (2022).

    Article  CAS  Google Scholar 

  43. Z. Ding, Y. Xu, Q. Yang and R. Hou, Int. J. Hydrogen Energy, 47, 2475 (2022).

    Google Scholar 

  44. Z. Lu, K. Sun, J. Wang and Z. Zhang, Catalysts, 10, 1360 (2020).

    Article  CAS  Google Scholar 

  45. B. Lee, H. S. Cho, H. Kim, D. Lim, W. Cho, C. H. Kim and H. Lim, J. Environ. Chem. Eng., 9, 106349 (2021).

    Article  CAS  Google Scholar 

  46. Max S. Peters, Klaus D. Timmerhaus, 5th ed. McGraw-Hill Education (2002).

  47. IEA, https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050.

  48. S. Sadeghi, S. Ghandehariun and M. A. Rosen, Energy, 208, 118347 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to BITS Pilani Hyderabad Campus for providing the necessary support and facilities for the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srikanta Dinda.

Additional information

Author Contributions

Suresh Kanuri: Conceptualization, Investigation, Data generation, Writing-original draft; Jha Deeptank Vinodkumar: Data generation; Sounak Roy: Administration, Data validation; Chanchal Chakraborty: Administration, Data validation; Santanu Prasad Dutta: Data validation; Satyapaul A. Singh: Conceptualization, Result validation, Supervision. Methodology; Srikanta Dinda: Conceptualization, Supervision, Writing and editing. All authors read and approved the final manuscript.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanuri, S., Vinodkumar, J.D., Datta, S.P. et al. Methanol synthesis from CO2 via hydrogenation route: Thermodynamics and process development with techno-economic feasibility analysis. Korean J. Chem. Eng. 40, 810–823 (2023). https://doi.org/10.1007/s11814-022-1302-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1302-1

Keywords

Navigation