Skip to main content
Log in

Vapor-phase synthesis of a robust polysulfide film for transparent, biocompatible, and long-term stable anti-biofilm coating

  • Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Biofilm formation caused by the fouling of microorganisms is one of the major problems in biomedical devices, food industry, and marine transportation. Since the removal of adherent biofilm is not a trivial task, it is of paramount importance to contain the formation of the anti-biofilm film. Herein, a polysulfide-based anti-biofilm coating (PAC) equipped with full transparency, non-toxicity, and environmental stability was developed via a simple vapor-phase synthesis. The polymer coating consists of polysulfide chain grafted onto poly (1,3,5,7-tetramethyl-1,3,5,7-tetravinyl cyclotetrasiloxane) (pV4D4) layer via thiol-ene click reaction, which was accomplished via a sequential deposition of each polymer followed by UV irradiation. The pV4D4 served as an adhesion promoter layer that substantially enhanced the interfacial adhesion between polysulfide layer and various substrate materials. The polysulfide layer exhibits a long-lasting anti-biofilm performance against pathogenic bacteria, such as Escherichia coli: O157 and Staphylococcus aureus. The excellent anti-biofilm property is attributed to slippery surface derived from the non-adherent, dynamic characteristics of the polysulfide (-S-S-) chain. The anti-biofilm coating indeed shows outstanding durability and robustness when exposed to extreme pH, organic solvents, and mechanical stresses. The fully transparent, robust coating developed in this study is a promising candidate material for a broad range of anti-biofilm applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Shapiro, Ann. Rev. Microbiol., 52, 81 (1998).

    Article  CAS  Google Scholar 

  2. A. G. Gristina, Science, 237, 1588 (1987).

    Article  CAS  Google Scholar 

  3. Y. Choi, Y. T. Kim, J. B. You, S. H. Jo, S. J. Lee, S. G. Im and K. G. Lee, Food Chem., 270, 445 (2019).

    Article  CAS  Google Scholar 

  4. J. W. Costerton and P. S. Stewart, Sci. Am., 285, 74 (2001).

    Article  CAS  Google Scholar 

  5. C. G. Kumar and S. K. Anand, Int. J. Food Microbiol., 42, 9 (1998).

    Article  CAS  Google Scholar 

  6. K. K. Chung, J. F. Schumacher, E. M. Sampson, R. A. Burne, P. J. Antonelli and A. B. Brennana, Biointerphases, 2, 89 (2007).

    Article  CAS  Google Scholar 

  7. B. Meyer, Int. Biodeterior. Biodegrad., 51, 249 (2003).

    Article  CAS  Google Scholar 

  8. L. Zhang, J. W. Yan, Z. W. Yin, C. Tang, Y. Guo, D. Li, B. Wei, Y. Xu, Q. R. Gu and L. M. Wang, Int. J. Nanomedicine, 9, 3027 (2014).

    CAS  Google Scholar 

  9. C. M. Grozea and G. C. Walker, Soft Matter, 5, 4088 (2009).

    Article  CAS  Google Scholar 

  10. A. M. C. Maan, A. H. Hofman, W. M. de Vos and M. Kamperman, Adv. Funct. Mater., 30, 2000936 (2020).

    Article  CAS  Google Scholar 

  11. S. Gon and M. M. Santore, Langmuir, 27, 15083 (2011).

    Article  CAS  Google Scholar 

  12. C. Yang, X. Ding, R. J. Ono, H. Lee, L. Y. Hsu, Y. W. Tong, J. Hedrick and Y. Y. Yang, Adv. Mater., 26, 7346 (2014).

    Article  CAS  Google Scholar 

  13. W. F. Yu, Y. X. Wang, P. Gnutt, R. Wanka, L. M. K. Krause, J. A. Finlay, A. S. Clare and A. Rosenhahn, ACS Appl. Bio Mater., 4, 2385 (2021).

    Article  CAS  Google Scholar 

  14. D. Y. Dong, C. Tsao, H. C. Hung, F. L. Yao, C. J. Tang, L. Q. Niu, J. R. Ma, J. MacArthur, A. Sinclair, K. Wu, P. Jain, M. R. Hansen, D. Ly, S. G. H. Tang, T. M. Luu and S. Y. Jiang, Sci. Adv., 7, eabc5442 (2021).

    Article  CAS  Google Scholar 

  15. C. Leng, S. Sun, K. Zhang, S. Jiang and Z. Chen, Acta Biomaterialia, 40, 6 (2016).

    Article  CAS  Google Scholar 

  16. K. Chae, W. Y. Jang, K. Park, J. Lee, H. Kim, K. Lee, C. K. Lee, Y. Lee, S. H. Lee and J. Seo, Sci. Adv., 6, eabb0025 (2020).

    Article  CAS  Google Scholar 

  17. Z. G. Guo, F. Zhou, J. C. Hao and W. M. Liu, J. Am. Chem. Soc., 127, 15670 (2005).

    Article  CAS  Google Scholar 

  18. J. Genzer and K. Efimenko, Biofouling, 22, 339 (2006).

    Article  CAS  Google Scholar 

  19. R. Poetes, K. Holtzmann, K. Franze and U. Steiner, Phys. Rev. Lett., 105, 166104 (2010).

    Article  Google Scholar 

  20. H. F. Bohn and W. Federle, Proc. National Acad. Sci. United States Am., 101, 14138 (2004).

    Article  CAS  Google Scholar 

  21. A. K. Epstein, T. S. Wong, R. A. Belisle, E. M. Boggs and J. Aizenberg, Proc. National Acad. Sci. United States Am., 109, 13182 (2012).

    Article  CAS  Google Scholar 

  22. T.-S. Wong, S. H. Kang, S. K. Y. Tang, E. J. Smythe, B. D. Hatton, A. Grinthal and J. Aizenberg, Nature, 477, 443 (2011).

    Article  CAS  Google Scholar 

  23. T. S. Kleine, R. S. Glass, D. L. Lichtenberger, M. E. Mackay, K. Char, R. A. Norwood and J. Pyun, ACS Macro Lett., 9, 245 (2020).

    Article  CAS  Google Scholar 

  24. R. Martin, A. Rekondo, A. R. de Luzuriaga, P. Casuso, D. Dupin, G. Cabanero, H. J. Grande and I. Odriozola, Smart Mater. Struct., 25, 084017 (2016).

    Article  Google Scholar 

  25. J. J. Griebel, N. A. Nguyen, S. Namnabat, L. E. Anderson, R. S. Glass, R. A. Norwood, M. E. Mackay, K. Char and J. Pyun, ACS Macro Lett., 4, 862 (2015).

    Article  CAS  Google Scholar 

  26. R. Xu, I. Belharouak, J. C. M. Li, X. F. Zhang, I. Bloom and J. Bareno, Adv. Energy Mater., 3, 833 (2013).

    Article  CAS  Google Scholar 

  27. J. J. Griebel, R. S. Glass, K. Char and J. Pyun, Prog. Polym. Sci., 58, 90 (2016).

    Article  CAS  Google Scholar 

  28. D. H. Kim, W. Jang, K. Choi, J. S. Choi, J. Pyun, J. Lim, K. Char and S. G. Im, Sci. Adv., 6, eabb5320 (2020).

    Article  CAS  Google Scholar 

  29. W. Jang, K. Choi, J. S. Choi, D. Kim, K. Char, J. Lim and S. G. Im, ACS Appl. Mater. Interfaces, 13, 61629 (2021).

    Article  CAS  Google Scholar 

  30. H. Kim, Y. Song, S. Park, Y. Kim, H. Mun, J. Kim, S. Kim, K. G. Lee and S. G. Im, Adv. Funct. Mater., 32, 2113253 (2022).

    Article  CAS  Google Scholar 

  31. J. Liu, Y. L. Sun, X. T. Zhou, X. M. Li, M. Kappl, W. Steffen and H. J. Butt, Adv. Mater., 33, 2100237 (2021).

    Article  CAS  Google Scholar 

  32. B. Y. Li and T. J. Webster, J. Orthop. Res., 36, 22 (2018).

    Google Scholar 

Download references

Acknowledgements

Hogi Kim and Seonghyeon Park contributed equally to this work. This research was supported in part by National R&D Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (Grant No. NRF-2021M3H4A 4079293), a grant from the Technology Innovation Program (No. 20008777) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea), and Nanomedical Devices Development Project of NNFC in 2022 (No. 1711160154). This study was also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2020R1I1A1A01066621).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eunjung Lee or Sung Gap Im.

Additional information

Co-first authors.

Notes

The authors declare no competing financial interest.

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Electronic Supplementary Material

11814_2022_1275_MOESM1_ESM.pdf

Vapor-phase synthesis of a robust polysulfide film for transparent, biocompatible, and long-term stable anti-biofilm coating

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Park, S., Song, Y. et al. Vapor-phase synthesis of a robust polysulfide film for transparent, biocompatible, and long-term stable anti-biofilm coating. Korean J. Chem. Eng. 40, 412–418 (2023). https://doi.org/10.1007/s11814-022-1275-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1275-0

Keywords

Navigation