Skip to main content

Advertisement

Log in

Industrial symbiosis: Boron waste valorization through CO2 utilization

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Various wastes being generated globally and dumped on land by mineral processing activities pose great ecological and health problems. An example is the boron mineral beneficiation solid wastes. Even greater threat is anthropogenic carbon dioxide (CO2) emissions among key causes of prevalent climate change. By this work, we propose a symbiotic solution to alleviate both environmental threats through recovering valuable boron products from boron wastes (BW), while also utilizing and sequestering CO2 stably and permanently. This article presents the results on the effect of important operation parameters for the performance of such a process within the following ranges determined by preliminary tests: temperature: 20–60°C, solid-to-liquid ratio: 0.1–0.5 g/ml, reaction time: 15–120 min, stirring speed: 300–700 rpm and particle size: 150–600 µm. CO2 gas (99.9%) flow rate was maintained continuously at 1.57 l/min under atmospheric pressure. The important findings are (1) per ton of BW production of commercially valuable either (a) 310 kg sodium penta-borate or (b) 350 kg sodium penta-borate mixed with Na2CO3, depending on the process configuration, (c) 725 kg relatively pure CaCO3, a potential source for precipitated calcium carbonate (PCC) and (d) 72 kg CO2 utilization, (2) effective parameters for CO2 utilization, in decreasing order are temperature, solid-to-liquid ratio and time, while stirring speed and particle size are ineffective within the range investigated and (3) the optimum operating conditions as: temperature: 60 °C, solid-to liquid ratio: 0.1 g/ml, time: 90 min, stirring speed: 500 rpm and particle size: <180 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

operation test parameter label denoting temperature [°C]

ANOVA:

analysis of variance [-]

B:

Operation test parameter label denoting particle size [µm]

BW:

run-of-mine solid wastes from boron enrichment processing [-]

C:

operation test parameter label denoting stirring speed [rpm]

CAGR:

compound annual growth rate [-]

CCS:

carbon capture and sequestration [-]

CDR:

carbon dioxide removal [-]

CDU:

carbon dioxide utilization [-]

CDUS:

carbon dioxide capture, utilization and storage [-]

COP26:

26th The UN Climate Change Conference of the Parties in Glasgow, the UK [-]

D:

operation test parameter label denoting solid-to liquid ratio [g/ml]

DAC:

direct (CO2) air capture [-]

df:

degrees of freedom [-]

E:

operation test parameter label denoting time [min]

e:

Random Korean in an experimental test [-]

EIA:

energy information administration [-]

EU:

European Union [-]

F:

F-test values [-]

G:

total captured (utilised) CO2 mass [g]

HABAS:

Habaş. Industrial and Medical Gases Production Industries Inc., Turkiye

HL:

heating loss [-]

IPCC:

Intergovernmental Panel on Climate Change [-]

M:

number of moles of an element under question

MS:

mean squares [-]

n:

number of test repetitions performed for an experimental combination [-]

OA:

orthogonal array [-]

PCC:

precipitated calcium carbonate [-]

SN:

performance characteristic [-]

SS:

sum squares [-]

WHO:

World Health Organization [-]

X:

fixed effect of the test parameters’ level combination used in an experimental test [-]

Y:

performance value of an experimental test under a set of values of the test parameters [-]

μ:

overall mean of the performance value [-]

References

  1. https://www.statista.com/statistics/264982/world-boron-reserves-by-major-countries/ (accessed 13 May 2022).

  2. http://www.etimine.com/boron-minerals/ (accessed 13 May 2022).

  3. http://www.etimine.com/boron-in-the-world/ (accessed 13 May 2022).

  4. C. Helvaci, in Encyclopedia of geology, 2nd ed., A. Elias, Scott, David Eds., Academic Press (2021).

  5. S.-P. B. Powoe, V. Kromah, M. Jafari and S. Chehreh Chelgani, Minerals, 11, 318 (2021).

    Article  CAS  Google Scholar 

  6. M. Sajid, G. Bary, M. Asim, R. Ahmad, M. Irfan Ahamad, H. Alotaibi, A. Rehman, I. Khan and Y. Guoliang, Alexandria Eng. J., 61, 3069 (2022).

    Article  Google Scholar 

  7. E. Karadagli and B. Cicek, Int. J. Appl. Ceram. Technol., 17, 563 (2020).

    Article  CAS  Google Scholar 

  8. B. Cicek, E. Karadagli and F. Duman, Ceram. Int., 44, 14264 (2018).

    Article  CAS  Google Scholar 

  9. B. Cicek, E. Karadagli and F. Duman, Constr. Build. Mater., 179, 232 (2018).

    Article  CAS  Google Scholar 

  10. İ. Kula, C. Gutsche, Y. Erdoğan, A. Fittschen and U. E. A. Fittschen, Turkish J. Chem., 44, 1244 (2020).

    Article  CAS  Google Scholar 

  11. Y. Zhang, Q. Guo, L. Li, P. Jiang, Y. Jiao and Y. Cheng, Materials (Basel), 9, 416 (2016).

    Article  Google Scholar 

  12. https://agriculture.borax.com/USBorax/media/assets/infographics/borates-mineral-solubility.pdf (2021) (accessed 13 May 2022).

  13. Z. N. Kurt Albayrak and E. Turan, Arab. J. Geosci., 14, 1002 (2021).

    Article  CAS  Google Scholar 

  14. W. Health, World Health, 4th ed., World Health Organization, Geneva (2011).

    Google Scholar 

  15. Y. Xu and J.-Q. Q. Jiang, Ind. Eng. Chem. Res., 47, 16 (2008).

    Article  CAS  Google Scholar 

  16. M. Zaman, S. A. Shahid and L. Heng, Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques, Springer International Publishing, Cham (2018).

    Book  Google Scholar 

  17. T. Kavas, Build. Environ., 41, 1779 (2006).

    Article  Google Scholar 

  18. A. Olgun, Y. Erdogan, Y. Ayhan and B. Zeybek, Ceram. Int., 31, 153 (2005).

    Article  CAS  Google Scholar 

  19. http://www.geology.cz/rroum/stazeni/2004_BAT_REFERENCE_DOCUMENT.pdf (2004) (accessed 13 May 2022).

  20. I. Kula, A. Olgun, V. Sevinc and Y. Erdogan, Cem. Concr. Res., 32, 227 (2002).

    Article  CAS  Google Scholar 

  21. A. Christogerou, P. Lampropoulou and E. Panagiotopoulos, Constr. Build. Mater., 280, 122493 (2021).

    Article  CAS  Google Scholar 

  22. S. U. Bayca, Theor. Found. Chem. Eng., 53, 395 (2019).

    Article  CAS  Google Scholar 

  23. A. Christogerou, T. Kavas, Y. Pontikes, C. Rathossi and G. N. Angelopoulos, Ceram. Int., 36, 567 (2010).

    Article  CAS  Google Scholar 

  24. M. Marangoni, I. Ponsot, B. Cicek and E. Bernardo, Adv. Appl. Ceram., 115, 427 (2016).

    Article  CAS  Google Scholar 

  25. A. Tunali, E. Ozel and S. Turan, J. Eur. Ceram. Soc., 35, 1089 (2015).

    Article  CAS  Google Scholar 

  26. B. Cicek, A. Tucci, E. Bernardo, J. Will and A. R. Boccaccini, Ceram. Int., 40, 6045 (2014).

    Article  CAS  Google Scholar 

  27. B. Cicek, L. Esposito, A. Tucci, E. Bernardo, A. R. Boccaccini and P. A. Bingham, Adv. Appl. Ceram., 111, 415 (2012).

    Article  CAS  Google Scholar 

  28. S. Kurama, A. Kara and H. Kurama, J. Eur. Ceram. Soc., 26, 755 (2006).

    Article  CAS  Google Scholar 

  29. J. G. J. Olivier, K. M. Schure and J. A. H. W. Peters, PBL Netherlands Environ. Assess. Agency (2017).

  30. V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield, Eds., https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf (2019) (accessed 13 May 2022).

  31. https://report.ipcc.ch/ar6wg3/pdf/IPCC_AR6_WGIII_FinalDraft_FullReport.pdf (2022) (accessed 13 May 2022).

  32. V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor and T. Waterfield, Summary for Policymakers: Global Warming of 1.5°C (2018).

  33. ESLR, https://gml.noaa.gov/ccgg/trends/ (2021) (accessed 13 May 2022).

  34. https://www.co2.eart (accessed 22 April 2022).

  35. A. Åberg, T. G. Benton, A. Froggatt, A. Giritharan, N. Jeffs, D. Quiggin and R. Townend, Chatham House, 6 (2021).

  36. B. Zhao, Y. Su, W. Tao, L. Li and Y. Peng, Int. J. Greenh. Gas Control, 9, 355 (2012).

    Article  Google Scholar 

  37. C. You and J. Kim, Korean J. Chem. Eng., 37, 1649 (2020).

    Article  CAS  Google Scholar 

  38. S. Kumar and M. K. Mondal, Korean J. Chem. Eng., 37, 231 (2020).

    Article  CAS  Google Scholar 

  39. A. Samanta, A. Zhao, G. K. H. Shimizu, P. Sarkar and R. Gupta, Ind. Eng. Chem. Res., 51, 1438 (2012).

    Article  CAS  Google Scholar 

  40. Z. Zhang, T. N. G. Borhani and M. H. El-Naas, in Exergetic, energetic and environmental dimensions, 1st ed., İ. Dincer, C. Ö. Colpan and Ö. Kızılkan Eds., Elsevier (2018).

  41. A. E. Creamer and B. Gao, Environ. Sci. Technol., 50, 7276 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. C. M. O. González, E. M. C. Morales, A. de M.N. Tellez, T. E. S. Quezada, O. V. Kharissova and M. A. Méndez-Rojas, in Handbook of greener synthesis of nanomaterials and compounds, 1st ed., B. Kharisov and O. Kharissova Eds., Elsevier (2021).

  43. R. Aniruddha, I. Sreedhar and B. M. Reddy, J. CO2 Util., 42, 101297 (2020).

    Article  CAS  Google Scholar 

  44. Y.-R. Lee, J. Kim and W.-S. Ahn, Korean J. Chem. Eng., 30, 1667 (2013).

    Article  CAS  Google Scholar 

  45. M. K. Mondal, H. K. Balsora and P. Varshney, Energy, 46, 431 (2012).

    Article  CAS  Google Scholar 

  46. M. Zunita, R. Hastuti, A. Alamsyah, K. Khoiruddin and I. G. Wenten, Sep. Purif. Rev., 51, 261 (2022).

    Article  CAS  Google Scholar 

  47. E. S. Sanni, E. R. Sadiku and E. E. Okoro, Int. J. Chem. Eng., 2021, 1 (2021).

    Article  Google Scholar 

  48. M. Kárászová, B. Zach, Z. Petrusová, V. Červenka, M. Bobák, M. Šyc and P. Izák, Sep. Purif. Technol., 238, 116448 (2020).

    Article  Google Scholar 

  49. M. C. Duke, B. Ladewig, S. Smart, V. Rudolph and J. C. Diniz da Costa, Front. Chem. Eng. China, 4, 184 (2010).

    Article  CAS  Google Scholar 

  50. X. Wang and C. Song, Front. Energy Res., 8, 560849 (2020).

    Article  Google Scholar 

  51. M. A. A. M. Abdah, M. Mokhtar, L.T. Khoon, K. Sopian, N. A. Dzulkurnain, A. Ahmad, Y. Sulaiman, F. Bella and M. S. Su’ait, Energy Reports, 7, 8677 (2021).

    Article  Google Scholar 

  52. M. Alidoost, A. Mangini, F. Caldera, A. Anceschi, J. Amici, D. Versaci, L. Fagiolari, F. Trotta, C. Francia, F. Bella and S. Bodoardo, Chem. — A Eur. J., 28, e202104201 (2022).

    Article  CAS  Google Scholar 

  53. B. Freeman, P. Hao, R. Baker, J. Kniep, E. Chen, J. Ding, Y. Zhang and G. T. Rochelle, Energy Procedia, 63, 605 (2014).

    Article  CAS  Google Scholar 

  54. A. T. Nakhjiri and A. Heydarinasab, J. Ind. Eng. Chem., 78, 106 (2019).

    Article  CAS  Google Scholar 

  55. C. A. Scholes, S.E. Kentish and A. Qader, Sep. Purif. Technol., 237, 116470 (2020).

    Article  CAS  Google Scholar 

  56. M. Scholz, B. Frank, F. Stockmeier, S. Falß and M. Wessling, Ind. Eng. Chem. Res., 52, 16929 (2013).

    Article  CAS  Google Scholar 

  57. P. Shao, Z. He, Y. Hu, Y. Shen, S. Zhang and Y. Yu, Chem. Eng. J., 435, 134957 (2022).

    Article  CAS  Google Scholar 

  58. L. Lavagna, G. Syrrokostas, L. Fagiolari, J. Amici, C. Francia, S. Bodoardo, G. Leftheriotis and F. Bella, J. Mater. Chem. A, 9, 19687 (2021).

    Article  CAS  Google Scholar 

  59. M. Reina, A. Scalia, G. Auxilia, M. Fontana, F. Bella, S. Ferrero and A. Lamberti, Adv. Sustain. Syst., 6, 2100228 (2022).

    Article  CAS  Google Scholar 

  60. W. Zhang, Y. Xu and Q. Wang, Energy, 241, 122524 (2022).

    Article  CAS  Google Scholar 

  61. D. Jansen, M. Gazzani, G. Manzolini, E. van Dijk and M. Carbo, Int. J. Greenh. Gas Control, 40, 167 (2015).

    Article  CAS  Google Scholar 

  62. O. Omoregbe, A.N. Mustapha, R. Steinberger-Wilckens, A. El-Kharouf and H. Onyeaka, Energy Reports, 6, 1200 (2020).

    Article  Google Scholar 

  63. A. I. Osman, J. K. Abu-Dahrieh, N. Cherkasov, J. Fernandez-Garcia D. Walker, R. I. Walton, D. W. Rooney and E. Rebrov, Mol. Catal., 455, 38 (2018).

    Article  CAS  Google Scholar 

  64. A. I. Osman, T. J. Deka, D. C. Baruah and D. W. Rooney, Biomass Convers. Biorefinery, 1 (2020).

  65. P. Wienchol, A. Szlęk and M. Ditaranto, Energy, 198, 117352 (2020).

    Article  CAS  Google Scholar 

  66. T. Wilberforce, A. G. Olabi, E. T. Sayed, K. Elsaid and M. A. Abdelkareem, Sci. Total Environ., 761, 143203 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Boston, S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hackett, J. P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Krevor, G. C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Petit, G. Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scott, N. Shah, B. Smit, J.P. M. Trusler, P. Webley, J. Wilcox and N. Mac Dowell, Energy Environ. Sci., 11, 1062 (2018).

    Article  CAS  Google Scholar 

  68. A. I. Osman, M. Hefny, M. I. A. Abdel Maksoud, A. M. Elgarahy and D. W. Rooney, Environ. Chem. Lett., 19, 797 (2021).

    Article  CAS  Google Scholar 

  69. N. Shreyash, M. Sonker, S. Bajpai, S. K. Tiwary, M. A. Khan, S. Raj, T. Sharma and S. Biswas, Energies, 14, 4978 (2021).

    Article  CAS  Google Scholar 

  70. N. S. Sifat and Y. Haseli, Energies, 12, 4143 (2019).

    Article  CAS  Google Scholar 

  71. P. Gabrielli, M. Gazzani and M. Mazzotti, Ind. Eng. Chem. Res., 59, 7033 (2020).

    Article  CAS  Google Scholar 

  72. I. Ghiat and T. Al-Ansari, J. CO2 Util., 45, 101432 (2021).

    Article  CAS  Google Scholar 

  73. C. Chao, Y. Deng, R. Dewil, J. Baeyens and X. Fan, Renew. Sustain. Energy Rev., 138, 110490 (2021).

    Article  CAS  Google Scholar 

  74. J. Ma, L. Li, H. Wang, Y. Du, J. Ma, X. Zhang and Z. Wang, Engineering, In press (2022) DOI:https://doi.org/10.1016/j.eng.2021.11.024.

  75. E. Smith, J. Morris, H. Kheshgi, G. Teletzke, H. Herzog and S. Paltsev, Int. J. Greenh. Gas Control, 109, 103367 (2021).

    Article  Google Scholar 

  76. IEAGHG, The Status and Challenges of CO2 Shipping Infrastructures. Technical Report 2020-10 (2020).

  77. National Petroleum Council, Meeting the Dual Challenge — A Roadmap to At-Scale Deployment of Carbon Capture, Use and Storage (2020).

  78. P. Psarras, J. He, H. Pilorgé, N. McQueen, A. Jensen-Fellows, K. Kian and J. Wilcox, Environ. Sci. Technol., 54, 6272 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. T. K. Righetti, Oil Gas, Nat. Resour. Energy J., 3, 907 (2017).

    Google Scholar 

  80. D. L. Sanchez, N. Johnson, S. T. McCoy, P. A. Turner and K. J. Mach, Proc. Natl. Acad. Sci., 115, 4875 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. [IEA] — International Energy Agency, Special Report on Carbon Capture, Utilisation and Storage: CCUS in Clean Energy Transitions (2020).

  82. https://ec.europa.eu/energy/maps/pci_fiches/PciFiche_12.4.pdf (accessed 22 April 2022).

  83. Energy Technologies Institute, https://www.eti.co.uk/programmes/carbon-capture-storage/strategic-uk-ccs-storage-appraisal (2016) (accessed 13 May 2022).

  84. K. Arning, J. Offermann-van Heek, A. Sternberg, A. Bardow and M. Ziefle, Environ. Innov. Soc. Transitions, 35, 292 (2020).

    Article  Google Scholar 

  85. F. Mulyasari, A. K. Harahap, A. O. Rio, R. Sule and W. G. A. Kadir, Int. J. Greenh. Gas Control, 108, 103312 (2021).

    Article  CAS  Google Scholar 

  86. K. Arning, A. Linzenich, L. Engelmann and M. Ziefle, Energy Clim. Chang., 2, 100025 (2021).

    Article  CAS  Google Scholar 

  87. Power Technology, https://www.power-technology.com/features/carbon-capture-cost/ (accessed 13 May 2022).

  88. Adam Baylin-Stern and Niels Berghout, https://www.iea.org/commentaries/is-carbon-capture-too-expensive (accessed 13 May 2022) (2021).

  89. https://www.iea.org/reports/direct-air-capture-3 (2022) (accessed 13 May 2022).

  90. THE Verge, https://www.theverge.com/2022/4/7/23013822/carbon-dioxide-removal-direct-air-capture-climate-change (accessed 13 May 2022).

  91. https://www.iea.org/reports/direct-air-capture-2022 (2022) (accessed 13 May 2022).

  92. THE VERGE, https://www.theverge.com/2022/4/4/23009804/united-nations-climate-change-report-greenhouse-emissions-2030-ipcc (accessed 13 May 2022).

  93. T. Pekdemir, Carbon dioxide utilisation: Closing the carbon cycle: 1st ed., Elsevier Inc. (2014).

  94. F. M. Baena-Moreno, M. Rodríguez-Galán, F. Vega, B. Alonso-Fariñas, L. F. Vilches Arenas and B. Navarrete, Energy Sources, Part A Recover. Util. Environ. Eff., 41, 1403 (2019).

    Article  CAS  Google Scholar 

  95. A. Schreiber, P. Zapp and W. Kuckshinrichs, Int. J. Life Cycle Assess., 14, 547 (2009).

    Article  CAS  Google Scholar 

  96. P. Warnke, K. Cuhls, U. Schomoch, L. Daniel, L. Andresscu, B. Dragomir, R. Gheirghiu, C. Baboschi, A. Curaj, M. Parkkinen and O. Kuusi, 100 Radical Innovation Breakthroughs for the future, European Commission (2019).

  97. G. Montes-Hernandez, M. Bah and F. Renard, J. CO2 Util., 35, 272 (2020).

    Article  CAS  Google Scholar 

  98. https://www.reportlinker.com/p06087127/Precipitated-Calcium-Carbonate-Market-Research-Report-by-Type-by-End-User-by-State-United-States-Forecast-to-Cumulative-Impact-of-COVID-19.html?utm_source=GNW (2021) (accessed 13 May 2022).

  99. M. Kakizawa, A. Yamasaki and Y. Yanagisawa, Energy, 26, 341 (2001).

    Article  CAS  Google Scholar 

  100. S. Teir, S. Eloneva and R. Zevenhoven, Energy Convers. Manag., 46, 2954 (2005).

    Article  CAS  Google Scholar 

  101. R. Zevenhoven, S. Eloneva and S. Teir, Catal. Today, 115, 73 (2006).

    Article  CAS  Google Scholar 

  102. A. H. A. Park and L. S. Fan, Chem. Eng. Sci., 59, 5241 (2004).

    Article  CAS  Google Scholar 

  103. E. Nduagu, T. Björklöf, J. Fagerlund, J. Wärn, H. Geerlings and R. Zevenhoven, Miner. Eng., 30, 75 (2012).

    Article  CAS  Google Scholar 

  104. A. L. Harrison, I. M. Power and G. M. Dipple, Environ. Sci. Technol., 47, 126 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. L. C. Pasquier, G. Mercier, J. F. Blais, E. Cecchi and S. Kentish, Environ. Sci. Technol., 48, 5163 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. N. Kemache, L. C. Pasquier, E. Cecchi, I. Mouedhen, J. F. Blais and G. Mercier, Fuel Process. Technol., 166, 209 (2017).

    Article  CAS  Google Scholar 

  107. J. H. Lee and J. H. Lee, Korean J. Chem. Eng., 38, 1757 (2021).

    Article  CAS  Google Scholar 

  108. E. R. Bobicki, Q. Liu, Z. Xu and H. Zeng, Prog. Energy Combust. Sci., 38, 302 (2012).

    Article  CAS  Google Scholar 

  109. M. S. Bingöl and M. Çopur, J. CO2 Util., 29, 29 (2019).

    Article  Google Scholar 

  110. M. Ozekmekci and M. Copur, J. CO2 Util., 42, 101321 (2020).

    Article  CAS  Google Scholar 

  111. H. Elçiçek and M. M. Kocakerim, Brazilian J. Chem. Eng., 35, 111 (2018).

    Article  Google Scholar 

  112. https://www.indiamart.com/proddetail/sodium-pentaborate-1211448991.html (accessed 13 May 2022).

  113. I. Kula, A. Olgun, Y. Erdogan and V. Sevinc, Cem. Concr. Res., 31, 491 (2001).

    Article  CAS  Google Scholar 

  114. A. Olgun, T. Kavas, Y. Erdogan and G. Once, Build. Environ., 42, 2384 (2007).

    Article  Google Scholar 

  115. N. Uçar, A. Çalık, M. Emre and I. Akkurt, Indoor Built Environ., 30, 1827 (2021).

    Article  Google Scholar 

  116. N. Buli, K. Abnett and S. Twidale, https://www.reuters.com/business/energy/eu-carbon-price-tops-50-euros-first-time-2021-05-04/(2021) (accessed 13 May 2022).

  117. IEA, https://www.iea.org/news/global-carbon-dioxide-emissions-are-set-for-their-second-biggest-increase-in-history (2021 (accessed 13 May 2022).

  118. M. Hollander and W. Rieman, III, Ind. Eng. Chem. Anal. Ed., 17, 602 (1945).

    Article  CAS  Google Scholar 

  119. S. Xu, Q. Gao, C. Zhou, J. Li, L. Shen and H. Lin, Mater. Chem. Phys., 274, 125182 (2021).

    Article  CAS  Google Scholar 

  120. Z. Huang, Q. Zeng, Y. Liu, Y. Xu, R. Li, H. Hong, L. Shen and H. Lin, J. Membr. Sci., 640, 119854 (2021).

    Article  CAS  Google Scholar 

  121. B. Chen, H. Xie, L. Shen, Y. Xu, M. Zhang, H. Yu, R. Li and H. Lin, J. Membr. Sci., 640, 119820 (2021).

    Article  CAS  Google Scholar 

  122. L. Rao, X. You, B. Chen, L. Shen, Y. Xu, M. Zhang, H. Hong, R. Li and H. Lin, Chemosphere, 288, 132490 (2022).

    Article  CAS  PubMed  Google Scholar 

  123. J. Fang, Y. Chen, C. Fang and L. Zhu, Sep. Purif. Technol., 281, 119876 (2022).

    Article  CAS  Google Scholar 

  124. J. L. Anderson, E. M. Eyring and M. P. Whittaker, J. Phys. Chem., 68, 1128 (1964).

    Article  CAS  Google Scholar 

  125. Y. Zhou, C. Fang, Y. Fang and F. Zhu, Spectrochim. Acta — Part A Mol. Biomol. Spectrosc., 83, 82 (2011).

    Article  CAS  Google Scholar 

  126. N. Kabay, M. Bryjak and N. Hilal, Boron separation processes, Elsevier, New York (2015).

    Google Scholar 

  127. C. Y. Nian, W. H. Yang and Y. S. Tarng, J. Mater. Process. Technol., 95, 90 (1999).

    Article  Google Scholar 

  128. M. S. Phadke, R.N. Kackar, D. V. Speeney and M. J. Grieco, Bell Syst. Tech. J., 62, 1273 (1983).

    Article  Google Scholar 

  129. J. J. Pignatiello, IIE Trans. (Institute Ind. Eng.), 20, 247 (1988).

    Google Scholar 

  130. Phillip J. Ross, Taguchi techniques for quality engineering: loss function, orthogonal experiments, parameter and tolerance design, 2nd Ed., McGraw-Hill, New York (1996).

    Google Scholar 

  131. G. Taguchi, System of experimental design; quality resources, Unipub-Kraus International Publications, New York (1987).

    Google Scholar 

  132. M. S. Phadke, Quality engineering using robust design, Prentice-Hall, Englewood Cliffs, New Jersey (1989).

    Google Scholar 

  133. M. Çopur, T. Pekdemir, C. Çelik and S. Çolak, Ind. Eng. Chem. Res., 36, 682 (1997).

    Article  Google Scholar 

  134. M. N. Islam and A. Pramanik, J. Adv. Manuf. Syst., 15, 151 (2016).

    Article  Google Scholar 

  135. G. S. Peace, Taguchi methods, a hands-on approach to quality engineering, Addison-Wesley, New York (1995).

    Google Scholar 

  136. W. G. Mook, in Environmental isotopes in the hydrological cycle — principles and applications, W. G. Mook Ed., International Atomic Energy Agency and United Nations Educational, Scientific and Cultural Organization (2001).

  137. F. Barzagli, C. Giorgi, F. Mani and M. Peruzzini, J. CO2 Util., 22, 346 (2017).

    Article  CAS  Google Scholar 

  138. D. M. Schubert, in Ullmann’s encyclopedia of industrial chemistry, Wiley-VCH Verlag GmbH & Co. KGaA (2015).

  139. Y. Kitano, M. Okumura, M. Idogake and M. Idogaki, Geochem. J., 13, 223 (1979).

    Article  CAS  Google Scholar 

  140. Y. Kitano, M. Okumura and M. Idogaki, Geochem. J., 12, 183 (1978).

    Article  CAS  Google Scholar 

  141. http://www.webmineral.com/data/Sborgite.shtml#.YmsQUtpBw2z (2012) (accessed 13 May 2022).

  142. N. V. Chukanov, Infrared spectra of mineral species, Springer Netherlands, Dordrecht (2014).

    Book  Google Scholar 

  143. S. Merlino, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem., 28, 3559 (1972).

    Article  CAS  Google Scholar 

  144. E. D. Spinosa, D. T. Hooie and R. B. Bennett, Summary report on emissions from the glass manufacturing industry, Environmental Protection Technology Series. EPA, Ohio (1979).

    Google Scholar 

  145. F. Pacheco-Torgal, C. Shi, A. P. Sanchez, A. Palomo Sánchez and F. P. Torgal, Carbon dioxide sequestration in cementitious construction materials, Woodhead Publishing (2018).

  146. D. M. Schubert, in Ullmann’s encyclopedia of industrial chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2015).

    Google Scholar 

  147. https://www.iea.org/news/global-carbon-dioxide-emissions-are-set-for-their-second-biggest-increase-in-history (2021) (accessed 13 May 2022).

  148. R. Davis and P. John, in Statistical approaches with emphasis on design of experiments applied to chemical processes, InTech (2018).

  149. https://www.made-in-china.com/products-search/hot-china-products/Calcium_Carbonate_Price.html (accessed 13 May 2022).

  150. https://www.alibaba.com/showroom/pure-calcium-carbonate-price.html (accessed 13 May 2022).

Download references

Acknowledgements

We are grateful to TUBITAK (The Scientific and Technological Research Council of Turkiye) for its financial support (108Y170) and Atatürk University, Erzurum, Türkiye, allowing this grant to be transferred to Çankırı Karatekin University, Çankırı, Turkiye to enable the completion of the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turgay Pekdemir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çopur, M., Pekdemir, T., Kocakerim, M.M. et al. Industrial symbiosis: Boron waste valorization through CO2 utilization. Korean J. Chem. Eng. 39, 2600–2614 (2022). https://doi.org/10.1007/s11814-022-1192-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1192-2

Keywords

Navigation