Skip to main content
Log in

Nano-sized hematite-assembled carbon spheres for effectively adsorbing paracetamol in water: Important role of iron

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study developed a new α-Fe2O3 (hematite) nanoparticles-loaded spherical biochar (H-SB) through the direct pyrolysis of glucose-derived spherical hydrochar and FeCl3. The optimal impregnation ratio (hydrochar and FeCl3) was 1/1.25 (wt/wt). H-SB was applied to remove paracetamol (PRC) from water. Results indicated that H-SB exhibited a relatively low surface area (127 m2/g) and total pore volume (0.089 cm3/g). The presence of iron particles in its surface was confirmed by scanning electron microscopy with energy dispersive spectroscopy. The dominant form of iron nanoparticles (α-Fe2O3) in its surface was confirmed by X-ray powder diffraction and Raman spectrum. The crystallite size of α-Fe2O3 in H-SB was 27.4 nm. The saturation magnetization of H-SB was 6.729 cmu/g. The analysis of Fourier-transform infrared spectroscopy demonstrated that the C-O and O-H groups were mainly responsible for loading α-Fe2O3 nanoparticles in its surface. The adsorption study indicated the amount of PRC adsorbed by H-SB slightly decreased within solution pH from 2 to 11. The adsorption reached a fast saturation after 120 min. The Langmuir maximum adsorption capacity of H-SB was 49.9 mg/g at 25 °C and pH 7.0. Ion-dipole interaction and π-π interaction played an important role in adsorption mechanisms, while hydrogen bonding and pore filling were minor. Therefore, H-SB can serve as a promising material for treating PRC-contaminated water streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. R. Bhateria and R. Singh, J. Water Process. Eng., 31, 100845 (2019).

    Article  Google Scholar 

  2. S. M. Abdelbasir and A. E. Shalan, Korean J. Chem. Eng., 36, 1209 (2019).

    Article  CAS  Google Scholar 

  3. I. Ihsanullah, Chem. Eng. J., 388, 124340 (2020).

    Article  CAS  Google Scholar 

  4. P. Zhang, D. O’Connor, Y. Wang, L. Jiang, T. Xia, L. Wang, D. C. W. Tsang, Y. S. Ok and D. Hou, J. Hazard. Mater., 384, 121286 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. M. Jain, M. Yadav, T. Kohout, M. Lahtinen, V. K. Garg and M. Sillanpää, Water Resour. Ind., 20, 54 (2018).

    Article  Google Scholar 

  6. J. Kaur, M. Kaur, M. K. Ubhi, N. Kaur and J.-M. Greneche, Mater. Chem. Phys., 258, 124002 (2021).

    Article  CAS  Google Scholar 

  7. H. N. Tran, F. Tomul, H. T. H. Nguyen, D. T. Nguyen, E. C. Lima, G. T. Le, C.-T. Chang, V. Masindi and S. H. Woo, J. Hazard. Mater., 394, 122255 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. L. Yu, C. Falco, J. Weber, R.J. White, J. Y. Howe and M.-M. Titirici, Langmuir, 28, 12373 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. H. N. Tran, C.-K. Lee, T. V. Nguyen and H.-P. Chao, Environ. Technol., 39, 2747 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. M. Sevilla and A. B. Fuertes, Chem. Eur. J., 15, 4195 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. F.-C. Huang, C.-K. Lee, Y.-L. Han, W.-C. Chao and H.-P. Chao, J. Taiwan. Inst. Chem. Eng., 45, 2805 (2014).

    Article  CAS  Google Scholar 

  12. A. Solanki and T. H. Boyer, Chemosphere, 218, 818 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. F. Tomul, Y. Arslan, B. Kabak, D. Trak and H. N. Tran, J. Chem. Technol. Biotechnol., 96, 869 (2021).

    Article  CAS  Google Scholar 

  14. V. O. Leone, M. C. Pereira, S. F. Aquino, L. C. A. Oliveira, S. Correa, T. C. Ramalho, L. V. A. Gurgel and A. C. Silva, New J. Chem., 42, 437 (2018).

    Article  CAS  Google Scholar 

  15. D.T. Nguyen, H.N. Tran, R.-S. Juang, N.D. Dat, F. Tomul, A. Ivanets, S. H. Woo, A. Hosseini-Bandegharaei, V. P. Nguyen and H.-P. Chao, J. Environ. Chem. Eng., 8, 104408 (2020).

    Article  CAS  Google Scholar 

  16. A. L. Bursztyn Fuentes, R. L. S. Canevesi, P. Gadonneix, S. Mathieu, A. Celzard and V. Fierro, Ind. Crops Prod., 155, 112740 (2020).

    Article  CAS  Google Scholar 

  17. S. Wong, Y. Lim, N. Ngadi, R. Mat, O. Hassan, I. M. Inuwa, N. B. Mohamed and J. H. Low, Powder Technol., 338, 878 (2018).

    Article  CAS  Google Scholar 

  18. L. Spessato, K. C. Bedin, A. L. Cazetta, I. P. A. F. Souza, V. A. Duarte, L. H. S. Crespo, M. C. Silva, R. M. Pontes and V. C. Almeida, J. Hazard. Mater., 371, 499 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. R. a. Markets, https://www.researchandmarkets.com/reports/4997604/paracetamol-market-growth-trends-covid-19 (2021).

  20. S. Pandolfi, V. Simonetti, G. Ricevuti and S. Chirumbolo, J. Med. Virol., 93, 5704 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. R. Cairns and J. A. Brown, Med. J. Aust, 211, 218 (2019).

    Article  PubMed  Google Scholar 

  22. W. J. Lee, P. S. Goh, W. J. Lau and A. F. Ismail, Arab. J. Sci. Eng., 45, 7109 (2020).

    Article  CAS  Google Scholar 

  23. S. Y. Bunting, D. J. Lapworth, E. J. Crane, J. Grima-Olmedo, A. Koroša, A. Kuczyñska, N. Mali, L. Rosenqvist, M. E. van Viet, A. Togola and B. Lopez, Environ. Pollut., 269, 115945 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. B. Nunes, Non-steroidal anti-inflammatory drugs in water: emerging contaminants and ecological impact, Springer International Publishing, Cham (2020).

    Google Scholar 

  25. D. Spreitzer and J. Schenk, Steel Res. Int., 90, 1900108 (2019).

    Article  Google Scholar 

  26. D. Cao, H. Li, L. Pan, J. Li, X. Wang, P. Jing, X. Cheng, W. Wang, J. Wang and Q. Liu, Sci. Rep., 6, 32360 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. S. B. Kanungo and S. K. Mishra, J. Therm. Anal., 46, 1487 (1996).

    Article  CAS  Google Scholar 

  28. L.-L. Sui, L.-N. Peng and H.-B. Xu, Korean J. Chem. Eng., 38, 498 (2021).

    Article  CAS  Google Scholar 

  29. M. I. Dar and S. A. Shivashankar, RSC Adv., 4, 4105 (2014).

    Article  CAS  Google Scholar 

  30. B. Ahmmad, K. Leonard, M. Shariful Islam, J. Kurawaki, M. Muruganandham, T. Ohkubo and Y. Kuroda, Adv. Powder Technol., 24, 160 (2013).

    Article  CAS  Google Scholar 

  31. D. E. Fouad, C. Zhang, H. El-Didamony, L. Yingnan, T. D. Mekuria and A. H. Shah, Results Phys., 12, 1253 (2019).

    Article  Google Scholar 

  32. P. J. Sephra, P. Baraneedharan, M. Sivakumar, T.D. Thangadurai and K. Nehru, J. Mater. Sci.: Mater. Electron., 29, 6898 (2018).

    CAS  Google Scholar 

  33. M. Tadic, D. Trpkov, L. Kopanja, S. Vojnovic and M. Panjan, J. Alloys Compd., 792, 599 (2019).

    Article  CAS  Google Scholar 

  34. G. Ohemeng-Boahen, D. D. Sewu, H. N. Tran and S. H. Woo, Colloids Surf. A, 625, 126911 (2021).

    Article  CAS  Google Scholar 

  35. S. Dashamiri, M. Ghaedi, K. Dashtian, M. R. Rahimi, A. Goudarzi and R. Jannesar, Ultrason. Sonochem., 31, 546 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. K. E. Waters, N. A. Rowson, R. W. Greenwood and A. J. Williams, Sep. Purif. Technol., 56, 9 (2007).

    Article  CAS  Google Scholar 

  37. V. Ranjithkumar, S. Sangeetha and S. Vairam, J. Hazard. Mater., 273, 127 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. V. Bernal, L. Giraldo and J. C. Moreno-Piraján, Thermochim. Acta, 683, 178467 (2020).

    Article  CAS  Google Scholar 

  39. D. Nematollahi, H. Shayani-Jam, M. Alimoradi and S. Niroomand, Electrochim. Acta, 54, 7407 (2009).

    Article  CAS  Google Scholar 

  40. M. Galhetas, M. A. Andrade, A. S. Mestre, E. Kangni-foli, M. J. Villa de Brito, M. L. Pinto, H. Lopes and A. P. Carvalho, Phys. Chem. Chem. Phys., 17, 12340 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. I. C. Afolabi, S. I. Popoola and O. S. Bello, Spectrochim. Acta A, 243, 118769 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by The Youth Incubator for Science and Technology Program, managed by Youth Development Science and Technology Center-Ho Chi Minh Communist Youth Union and Department of Science and Technology of Ho Chi Minh City, the contract number is “37/2020/HĐ-KHCNT-VU” (30/12/2020).

Author information

Authors and Affiliations

Authors

Contributions

Ton That Loc: Data Curation, Formal analysis, Project Administration. Nguyen Duy Dat: Formal analysis, Investigation, Writing — Review & Editing. Hai Nguyen Tran: Visualization, Validation, Funding acquisition, Project Administration, Supervision, Writing — Review & Editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hai Nguyen Tran.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loc, T.T., Dat, N.D. & Tran, H.N. Nano-sized hematite-assembled carbon spheres for effectively adsorbing paracetamol in water: Important role of iron. Korean J. Chem. Eng. 40, 3029–3038 (2023). https://doi.org/10.1007/s11814-021-1013-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-1013-z

Keywords