Skip to main content
Log in

Thermo-hydraulic performance of nanofluids in a bionic fractal microchannel heat sink with traveling-wave fins

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Aiming at high working power and heat dissipation of electronic components, this study developed a novel bionic fractal microchannel heat sink with traveling-wave fins based on fractal theory and disk-like tree-like structure. α-Al2O3-water nanofluid was chosen as the working fluid instead of water in the microchannel heat sink. Thermohydraulic performance of nanofluids in the bionic fractal microchannel heat sink with traveling-wave fins was simulated numerically, and its comprehensive performance was studied. The main control parameters of this study include the depths of the traveling wave structure (h=0.00005 m, 0.00010 m, 0.00015 m, 0.00020 m, 0.00025 m), the eccentricity ratios of the traveling wave structure (e=0, 0.1, 0.2, 0.3, 0.4) and Reynolds numbers (Re=200–1,000). Results indicate that the surface temperature of the microchannel heat sink decreases with Reynolds number and depth of traveling wave structure. The use of traveling ribs at fractal corners can convert the inhomogeneous flow caused by the fractal effect into a stable horizontal channel flow more efficiently, while the temperature uniformity increases with depth and eccentricity ratio. Results also show that the traveling wave structure has the best overall performance when the eccentricity ratio of the traveling wave structure is 0.1 or 0.2, and the depth is 0.00020 m or 0.00025 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

area of the panel [m2]

Cp :

specific heat capacity [J/kg−1·K]

d0 :

diameter of the smooth microchannel [m]

D:

hydraulic diameter [m]

e:

eccentricity ratio of traveling wave fins

E:

distance between the deepest point of the structure and the center of the structure [m]

h:

convective heat transfer coefficient [W/m−2·K]

h0 :

height from the peak to the trough of the traveling wave structure [m]

H:

height of the microchannel [m]

Kn:

Knudsen number

L:

length of the microchannel [m]

L0 :

length of the first level microchannel [m]

L1 :

length of the second level microchannel [m]

L2 :

length of the third level microchannel [m]

L3 :

distance between traveling wave fin structures [m]

m:

mass flow rate [kg/s]

M:

width between the peaks of the structure [m]

MHS:

microchannel heat sink

nv :

molecules per unit volume

Nu:

Nusselt number

P:

pressure [Pa]

ΔP:

pressure drop [Pa]

q:

heat flux [W/m2]

Q:

quantity of heat [W]

R:

radius of disk-shaped TMHS [m]

Re:

Reynolds number

Rin :

inlet radius[m]

T:

temperature [K]

ΔT:

temperature rise [K]

TMHS:

tree-shape microchannel heat sink

u:

inlet velocity [m/s]

U:

volume flow rate [m3/s]

V:

velocity [m/s]

W:

width of the microchannel [m]

θ :

fractal angle of TMHS [rad]

λ :

thermal conductive [W/m·K]

λ m :

mean free path [m]

μ :

kinetic viscosity of fluid medium [Pa·s]

ν :

velocity vector [m/s]

ρ :

density of liquid water [kg/m3]

w:

width difference [mm]

c:

cavity

f:

fluid

in:

inlet

out:

average of outlets

pum:

pumping power

r:

rib

s:

solid

sm:

smooth wall surface

w:

wall of the microchanne

References

  1. H. Li, Y. He, C. Wang, X. Wang and Y. Hu, Appl. Therm. Eng., 236, 117 (2019).

    CAS  Google Scholar 

  2. M. Chen, X. Wang, Y. Hu and Y. He, J. Quant. Spectrosc. Ra., 250, 107029 (2020).

    Article  CAS  Google Scholar 

  3. K. G. Dehkordi, A. Karimipour, M. Afrand, D. Toghraie and A. H. M. Isfahani, Int. J. Thermophys., 41, 132 (2020).

    Article  CAS  Google Scholar 

  4. M. Sheikholeslami, M. B. Gerdroodbary, S. V Mousavi, D. D. Ganji and R. Moradi, J. Magn. Magn. Mater., 460, 302 (2018).

    Article  CAS  Google Scholar 

  5. D. B. Tuckerman and R. F. W. Pease, IEEE. Electr. Device. L., 2(5), 126 (1981).

    Article  Google Scholar 

  6. S. A. Sajadifar, A. Karimipour and D. Toghraie, Eur. J. Mech. B-Fluid., 61, 25 (2017).

    Article  Google Scholar 

  7. S. Rostami, H. Ahmadi-Danesh-Ashtiani, D. Toghraie and R. Fazaeli, Physica A., 548, 123879 (2020).

    Article  CAS  Google Scholar 

  8. C. Hua, X. Wang, X. Gao, H. Zheng, X. Han and G. Chen, Appl. Therm. Eng., 126, 1058 (2017).

    Article  Google Scholar 

  9. Z. Li, A. Shahsavar, K. Niazi, A. A. Al-Rashed and S. Rostami, Int. Commun. Heat Mass.Transf., 115, 104628 (2020).

    Article  CAS  Google Scholar 

  10. S. U. Choi and J. A. Eastman, ASME-Publications-Fed, 231, 99 (1995).

    CAS  Google Scholar 

  11. M. Bahiraei, N. Mazaheri and H. Moayedi, Int. J. Heat. Mass Transf., 151, 119419 (2020).

    Article  CAS  Google Scholar 

  12. A. Kumar, V. Sugunamma, N. Sandeep and and R. Ramana, Multidiscip. Model. Mater. Struct., 15(1), 103 (2018).

    Google Scholar 

  13. M. Sheikholeslami and S. Abelman, Eng. Computation., 35(5), 1855 (2017).

    Article  Google Scholar 

  14. M. Izadi, B. Bastani and M. A. Sheremet, Adv. Powder Technol., 31(6), 2493 (2020).

    Article  CAS  Google Scholar 

  15. D. H. Werner and S. Ganguly, IEEE. Antenn. Propag. M., 45(1), 38 (2003).

    Article  Google Scholar 

  16. A. Bejan and M. R. Errera, Fractals., 5(04), 685 (1997).

    Article  Google Scholar 

  17. A. Bejan, J. Heat Transf., 122(3), 430 (2000).

    Article  CAS  Google Scholar 

  18. D. V. Pence, Nanosc. Microsc. Therm., 6(4), 319 (2003).

    Article  Google Scholar 

  19. M. Varmazyar, M. Habibi, M. Amini, A. H. Pordanjani, M. Afrand and S. M. Vahedi, Powder Technol., 366, 164 (2020).

    Article  CAS  Google Scholar 

  20. W. He, R. Mashayekhi, D. Toghraie, O. A. Akbari and I. Tlili, Int. Commun. Heat Mass Transf., 117, 104700 (2020).

    Article  CAS  Google Scholar 

  21. Y. Chen and P. Cheng, Int. J. Heat. Mass Transf., 45(13), 2643 (2002).

    Article  Google Scholar 

  22. P. Ma, T. Fu, C. Zhu and Y. Ma, Korean J. Chem. Eng., 36(1), 21 (2019).

    Article  CAS  Google Scholar 

  23. L. Zhang, D. Peng, W. Lyu and F. Xin, Chem. Eng. J., 263, 452 (2015).

    Article  CAS  Google Scholar 

  24. D. R. Emerson, K. Cieślicki, X. Gu and R. W. Barber, Lab Chip., 6(3), 447 (2006).

    Article  PubMed  CAS  Google Scholar 

  25. M. Izadi, S. H. Pour, A. K. Yasuri and A. J. Chamkha, J. Therm. Anal. Calorim., 136, 2461 (2019).

    Article  CAS  Google Scholar 

  26. M. Bahiraei and A. Monavari, Appl. Therm. Eng., 179, 115621 (2020).

    Article  CAS  Google Scholar 

  27. K. Bao, C. Hua, X. Wang, X. Han and G. Chen, Int. J. Heat. Mass Transf., 154, 119672 (2020).

    Article  CAS  Google Scholar 

  28. P. Talebizadehsardari, H. Rahimzadeh, G. Ahmadi, K. Inthavong, M. M. Keshtkar and M. A. Moghimi, Adv. Powder Technol., 31(8), 3134 (2020).

    Article  Google Scholar 

  29. S. Rostami, A. Aghaei, A. H. Joshaghani, H. M. Hezaveh, M. Sharifpur and J. P. Meyer, J. Therm. Anal. Calorim., 143, 1569 (2021).

    Article  CAS  Google Scholar 

  30. A. Arshad, M. Jabbal, P. T. Sardari, M. A. Bashir, H. Faraji and Y. Yan, Therm. Sci. Eng. Prog., 18, 100520 (2020).

    Article  Google Scholar 

  31. C. Herman and E. Kang, Int. J. Heat Mass Transf., 45(18), 3741 (2002).

    Article  Google Scholar 

  32. C. Qi, T. Chen, J. Tu and Y. Wang, Korean J. Chem. Eng., 37(12), 2104 (2020).

    Article  CAS  Google Scholar 

  33. A. M. Guzmán, M. J. Cárdenas, F. A. Urzúa and P. E. Araya, Int. J. Heat Mass Transf., 52(15–16), 3778 (2009).

    Article  Google Scholar 

  34. D. Y. Kim and J. M. Kim, Korean J. Chem. Eng., 36(6), 837 (2019).

    Article  CAS  Google Scholar 

  35. C. Qi, T. Chen, Y. Wang and L. Yang, Korean J. Chem. Eng., 37(9), 1466 (2020).

    Article  CAS  Google Scholar 

  36. C. Qi, J. Hu, M. Liu, L. Guo and Z. Rao, Energ. Convers. Manage., 153, 557 (2017).

    Article  CAS  Google Scholar 

  37. S. R. Yan, A. Golzar, M. Sharifpur, J. P. Meyer, D. H. Liu and M. Afrand, Int. J. Mech. Sci., 185, 105832 (2020).

    Article  Google Scholar 

  38. M. W. Tian, S. Rostami, S. Aghakhani, A. S. Goldanlou and C. Qi, Int. J. Mech. Sci., 189, 105975 (2021).

    Article  Google Scholar 

  39. Z. Li, M. Sheikholeslami, M. Jafaryar, A. Shafee and A. J. Chamkha, J. Mol. Liq., 266, 797 (2018).

    Article  CAS  Google Scholar 

  40. Y. Hu, L. Shi, Z. Zhang, Y. He and J. Zhu, Energ. Convers. Manage., 213, 112829 (2020).

    Article  CAS  Google Scholar 

  41. H. Li, Y. He, X. Wang, D. Liu and Z. Liu, J. Alloy. Compd., 773, 743 (2019).

    Article  CAS  Google Scholar 

  42. M. Sheikholeslami, A. Arabkoohsar, I. Khan, A. Shafee and Z. Li, J. Clean. Prod., 221, 885 (2019).

    Article  CAS  Google Scholar 

  43. D. M. C. Shastry and U. C. Arunachala, J. Energy Storage, 28, 101312 (2020).

    Article  Google Scholar 

  44. X. Wang, Y. Li, Y. Yan, E. Wright, N. Gao and G. Chen, Int. J. Refrig., 119, 316 (2020).

    Article  CAS  Google Scholar 

  45. M. Eisapour, A. H. Eisapour, M. J. Hosseini and P. Talebizadehsardari, Appl. Energ., 266, 114849 (2020).

    Article  CAS  Google Scholar 

  46. H. M. Sandeep and U. C. Arunachala, Renew. Sust. Energ. Rev., 69, 1218 (2017).

    Article  CAS  Google Scholar 

  47. Y. Peng, W. Liu, W. Chen and N. Wang, Int. J. Heat Mass Transf., 71, 79 (2014).

    Article  Google Scholar 

  48. F. Fan, C. Qi and Q. Liu, Case. Stud. Therm. Eng., 22, 100761 (2020).

    Article  Google Scholar 

  49. C. Qi, Y. Wang and J. Tang, Asia-Pac. J. Chem. Eng., 15(4), e2482 (2020).

    CAS  Google Scholar 

  50. W. Yan, C. Li and W. Ye, Heat Transf. Asian Res., 48, 2329 (2019).

    Article  Google Scholar 

  51. D. Ma, G. Xia, J. Wang, Y. Yang, Y. Jia and L. Zong, Energ. Convers. Manage., 152, 157 (2017).

    Article  CAS  Google Scholar 

  52. Y. Li, R. Kalbasi, Q. Nguyen and M. Afrand, Powder Technol., 367, 464 (2020).

    Article  CAS  Google Scholar 

  53. S. Rostami, M. Zarringhalam, A. A. Alizadeh, D. Toghraie and A. S. Goldanlou, J. Mol. Liq., 312, 113130 (2020).

    Article  CAS  Google Scholar 

  54. A. Karimipour, A. D’Orazio and M. S. Shadloo, Physica E., 86, 146 (2017).

    Article  CAS  Google Scholar 

  55. K. A. Kumar, J. R. Reddy, V. Sugunamma and N. Sandeep, Alex. Eng. J., 57, 435 (2018).

    Article  Google Scholar 

  56. M. Izadi, M. Javanahram, S. M. H. Zadeh and D. Jing, Chinese J. Chem. Eng., 28(2), 329 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by National Natural Science Foundation of China (Grant No. 51606214) and Natural Science Foundation of Jiangsu Province, China (Grant No. BK20181359).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, C., Sun, L., Wang, Y. et al. Thermo-hydraulic performance of nanofluids in a bionic fractal microchannel heat sink with traveling-wave fins. Korean J. Chem. Eng. 38, 1592–1607 (2021). https://doi.org/10.1007/s11814-021-0836-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0836-y

Keywords

Navigation