Skip to main content

Advertisement

Log in

Microwave-synthesized high-performance mesoporous SBA-15 silica materials for CO2 capture

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Microwave-assisted post-synthetic detemplating method was applied to remove successfully the occluded organic template from the mesoporous silica frameworks of as-synthesized SBA-15 within a short period of time compared to a conventional method, such as furnace calcination. The nitrogen adsorption/desorption isotherm studies showed that the resultant detemplated SBA-15 had a very high specific surface area of 1,271 m2/g, large pore size of 9.21 nm and high pore volume of 2.10 cm3/g; while the powder X-ray diffraction patterns and high-resolution TEM images of these support materials revealed the presence of highly ordered mesopores without any structural shrinkage. Both the microwave power and time during post-synthetic microwave irradiation were found to influence the morphological structure of the SBA-15 support. To evaluate the adsorption performance of the microwave-irradiated SBA-15 support, CO2 adsorption uptake was measured after functionalizing it with different loadings of polyethyleneimine (PEI) under 9.7% CO2/N2 mixture at 75oC. The maximum CO2 uptake was 3.63 mmol CO2/g (0.16 g/g), with an optimum PEI loading of 70 wt%. Because of the significant improvement in structural characteristics, the microwave-irradiated SBA-15 supports facilitated more PEI incorporation that contributed to about 15% higher CO2 uptake than that of conventional furnace calcined one. In addition, the sorbent demonstrated very good cyclic stability when tested over 25 cycles and for a total duration of 20 h in humid conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

a0 :

unit cell parameter

wd :

wall thickness

dp :

BJH pore diameter

d100 :

d-spacing of (100) diffraction peak

qf :

instantaneous adsorption values at time t

qe :

instantaneous adsorption values at equilibrium

kn, m: and n:

model parameters

AAD:

average absolute deviation

θ :

diffractionangle

References

  1. U. Cubasch, D. Wuebbles, D. Chen, M. C. Facchini, D. Frame, N. Mahowald and J.-G. Winther, Introduction. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA (2013).

    Google Scholar 

  2. A. B. Rao and E. S. Rubin, Environ. Sci. Technol., 36, 4467 (2002).

    CAS  PubMed  Google Scholar 

  3. D. Singh, E. Croiset, P. L. Douglas and M. A. Douglas, Energy Convers. Manag., 44, 3073 (2003).

    CAS  Google Scholar 

  4. M. YT. Le, S. Y. Lee and S. J. Park, Int. J. Hydrogen Energy, 39, 12340 (2014).

    Google Scholar 

  5. Y. Choe, K.-J. Oh, S.-S. Kim and S.-W Park, Korean J. Chem. Eng., 27, 962 (2010).

    CAS  Google Scholar 

  6. K.-S. Hwang, L. Han, D.-W Park, K.-J. Oh, S.-S. Kim and S.-W Park, Korean J. Chem. Eng., 27, 241 (2010).

    CAS  Google Scholar 

  7. P. Sharma, I.-H. Baek, Y.-W. Park, S.-C. Nam, J.-H. Park, S.-D. Park and S. Y Park, Korean J. Chem. Eng., 29, 249 (2012).

    CAS  Google Scholar 

  8. A. Zhao, A. Samanta P. Sarkar and R. Gupta, Ind. Eng. Chem. Res., 52, 6480 (2013).

    CAS  Google Scholar 

  9. R. Dey, R. Gupta and A. Samanta, Sep. Sci. Technol, 53, 2683 (2018).

    CAS  Google Scholar 

  10. E.S. Sanz-Pérez, M. Olivares-Marín, A. Arencibia, R. Sanz, G. Calleja and M. M. Maroto-Valer, Int. J Greenh. Gas Con., 17, 366 (2013).

    Google Scholar 

  11. Z. Liu, D. Pudasainee, Q. Liu and R. Gupta, Sep. Purif. Technol., 156, 259 (2015).

    CAS  Google Scholar 

  12. R. Kishor and A. K. Ghoshal, Chem. Eng. J., 300, 236 (2016).

    CAS  Google Scholar 

  13. T. Zhu, S. Yang, D. K. Choi and K. H. Row, Korean J. Chem. Eng., 27, 1910 (2010).

    CAS  Google Scholar 

  14. A. Boonpoke, S. Chiarakorn, N. Laosiripojana, S. Towprayoon and A. Chidthaisong, Korean J. Chem. Eng., 29, 89 (2012).

    CAS  Google Scholar 

  15. C. Chen, J. Kim and WS. Ahn, Korean J. Chem. Eng., 31, 1919 (2014).

    CAS  Google Scholar 

  16. C. Manianglung, R. M. Pacia and Y. S. Ko, Korean J. Chem. Eng., 36, 1267 (2019).

    CAS  Google Scholar 

  17. WJ. Son, J. S. Choi and WS. Ahn, Micropor. Mesopor. Mater., 113, 31 (2008).

    CAS  Google Scholar 

  18. C. Chen, S. T. Yang, W. S. Ahn and R. Ryoo, Chem. Commun., 24, 3627 (2009).

    Google Scholar 

  19. C. Chen, K. S. You, J. W Ahn and WS. Ahn, Korean J. Chem. Eng., 27, 1010 (2010).

    CAS  Google Scholar 

  20. X. Ma, X. Wang and C. Song, J. Am. Chem. Soc., 131, 5777 (2009).

    CAS  PubMed  Google Scholar 

  21. A. Olea, E.S. Sanz-Perez, A. Arencibia, R. Sanz and G. Calleja, Adsorption, 19, 2 (2013).

    Google Scholar 

  22. Y K. Bae and O. H. Han, Micropor. Mesopor. Mater., 106, 304 (2007).

    CAS  Google Scholar 

  23. L. C. C. Silva, T. V. S. Reis, I. C. Cosentino, M. C. A. Fantini, J. R. Matos and R. E. Bruns, Micropor. Mesopor. Mater., 133, 1 (2010).

    Google Scholar 

  24. F. Kleitz, W. Schmidt and F. Schuth, Micropor. Mesopor. Mater., 65, 1 (2003).

    CAS  Google Scholar 

  25. B. Tian, X. Liu, C. Yu, F. Gao, Q. Luo, S. Xie, B. Tu and D. Zhao, Chem. Commun., 11, 1186 (2002).

    Google Scholar 

  26. T. L. Lai, Y.Y. Shu, Y. C. Lin, W.N. Chen and C.B. Wang, Mater. Lett., 63, 1693 (2009).

    CAS  Google Scholar 

  27. S.G.d. Avila, L.C.C. Silva and J.R. Matos, Micropor. Mesopor. Mater., 234, 277 (2016).

    Google Scholar 

  28. M. H. Yuan, L. Wang and R. T. Yang, Langmuir, 30, 8124 (2014).

    CAS  PubMed  Google Scholar 

  29. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, Science, 279, 548 (1998).

    CAS  PubMed  Google Scholar 

  30. F. Berube and S. Kaliaguine, Micropor. Mesopor. Mater., 115, 469 (2008).

    CAS  Google Scholar 

  31. M. Barczak, K. Michalak-Zwierz, K. Gdula, K. Tyszczuk-Rotko, R. Dobrowolski and A. Dabrowski, Micropor. Mesopor. Mater., 211, 162 (2015).

    CAS  Google Scholar 

  32. M. S. Yilmaz and S. Piskin, J. Therm. Anal. Calorim., 121, 1255 (2015).

    Google Scholar 

  33. Z. Peng and J.-Y Hwang, Int. Mater. Rev., 60, 30 (2015).

    CAS  Google Scholar 

  34. L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan and V. K. Varadan, Microwave electronics: Measurement and materials characterization, John Wiley & Sons. Ltd., USA (2004).

    Google Scholar 

  35. A.S. Mujumdar, Handbook of industrial drying, fourth Ed., CRC, Boca Raton (2006).

    Google Scholar 

  36. X. Xu, C. Song, J. M. Andresen, B. G. Miller and A. W. Scaroni, Energy Fuels, 16, 1463 (2002).

    CAS  Google Scholar 

  37. J. Liu, D. Cheng, Y Liu and Z. Wu, Energy Fuels, 27, 5416 (2013).

    CAS  Google Scholar 

  38. W. Klinthong, C. H. Huang and C. S. Tan, Ind. Eng. Chem. Res., 55, 6481 (2016).

    CAS  Google Scholar 

  39. X. Wang, X. Ma, C. Song, D. R. Locke, S. Siefert, R. E. Winans, J. Möllmer, M. Lange, A. Möller and R. Gläser, Micropor. Mesopor. Mater., 169, 103 (2013).

    CAS  Google Scholar 

  40. A. Heydari-Gorji and A. Sayari, Chem. Eng. J., 173, 72 (2011).

    CAS  Google Scholar 

  41. A. Samanta, A. Zhao, G. K. H. Shimizu, P. Sarkar and R. Gupta, Ind. Eng. Chem. Res., 51, 1438 (2012).

    CAS  Google Scholar 

  42. A. Sayari and Y. Belmabkhout, J. Am. Chem. Soc, 132, 6312 (2010).

    CAS  PubMed  Google Scholar 

  43. G. Sartori and D. W. Savage, Ind. Eng. Chem. Fundam., 22, 239 (1983).

    CAS  Google Scholar 

  44. T. L. Donaldson, Y. N. Nguyen, Ind. Eng. Chem. Fundam., 19, 260 (1980).

    CAS  Google Scholar 

Download references

Acknowledgements

Runa Dey is thankful to Indian Institute of Technology (Indian School of Mines), Dhanbad, India for financial support in the form of a research scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunkumar Samanta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, R., Samanta, A. Microwave-synthesized high-performance mesoporous SBA-15 silica materials for CO2 capture. Korean J. Chem. Eng. 37, 1951–1962 (2020). https://doi.org/10.1007/s11814-020-0596-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0596-0

Keywords

Navigation